Skip to content

Commit cd9ac25

Browse files
Update generative-proof-of-concept-CPU-preprocessing-in-memory.py
Save work
1 parent 4cac5f8 commit cd9ac25

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

generative-proof-of-concept-CPU-preprocessing-in-memory.py

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -83,7 +83,7 @@ def objective(trial: optuna.Trial) -> float:
8383
# Number of text samples to create: # Number of text samples (of approximately max_seq_len) to create
8484
# Raises RAM in a linear fashion
8585

86-
SAMPLES_TO_CREATE = 150
86+
SAMPLES_TO_CREATE = 230
8787

8888
# How many tokens to provide before expecting the next token to be predicted.
8989
# Half this = double RAM (inversely proportional to RAM requirement)
@@ -119,31 +119,31 @@ def objective(trial: optuna.Trial) -> float:
119119
# Begin MLflow trial run (nested inside parent run if any)
120120

121121

122-
POSITIONAL_EMBEDDING_DROPOUT = trial.suggest_float('POSITIONAL_EMBEDDING_DROPOUT', 0.7, 0.99)
122+
POSITIONAL_EMBEDDING_DROPOUT = 0.734 # trial.suggest_float('POSITIONAL_EMBEDDING_DROPOUT', 0.7, 0.99)
123123

124-
activation = trial.suggest_categorical('activation', ['relu', 'gelu', 'swish', 'softsign'])
124+
activation = trial.suggest_categorical('activation', ['swish', 'softsign']) # ['relu', 'gelu', 'swish', 'softsign'])
125125

126-
predecessor_level_connection_affinity_factor_first = trial.suggest_float('predecessor_level_connection_affinity_factor_first', 0.01, 20.0)
126+
predecessor_level_connection_affinity_factor_first = trial.suggest_float('predecessor_level_connection_affinity_factor_first', 25.0, 35.0)
127127

128-
predecessor_level_connection_affinity_factor_main = trial.suggest_float('predecessor_level_connection_affinity_factor_main', 0.1, 20.0)
128+
predecessor_level_connection_affinity_factor_main = trial.suggest_float('predecessor_level_connection_affinity_factor_main', 16.0, 25.0)
129129

130-
max_consecutive_lateral_connections = trial.suggest_int('max_consecutive_lateral_connections', 2, 7)
130+
max_consecutive_lateral_connections = trial.suggest_int('max_consecutive_lateral_connections', 5, 7)
131131

132132
p_lateral_connection = trial.suggest_float('p_lateral_connection', 0.01, 0.5)
133133

134134
num_lateral_connection_tries_per_unit = trial.suggest_int('num_lateral_connection_tries_per_unit', 1, 17)
135135

136-
learning_rate = trial.suggest_float('learning_rate', 10 ** -4, 0.05, log=True)
136+
learning_rate = trial.suggest_float('learning_rate', 0.0005, 0.0012, log=True)
137137

138138
epochs = trial.suggest_int('epochs', 10, 50)
139139

140-
batch_size = trial.suggest_int('batch_size', 5, 15)
140+
batch_size = 7 # trial.suggest_int('batch_size', 5, 15)
141141

142-
gradient_accumulation_steps = trial.suggest_int('gradient_accumulation_steps', 1, 2)
142+
gradient_accumulation_steps = trial.suggest_int('gradient_accumulation_steps', 2, 15)
143143

144144
# Level constraints - ensure max >= min by setting min of max to value of min
145145
minimum_levels = trial.suggest_int('minimum_levels', 1, 3)
146-
maximum_levels = trial.suggest_int('maximum_levels', minimum_levels, 3)
146+
maximum_levels = 3 # trial.suggest_int('maximum_levels', minimum_levels, 3)
147147

148148
# Units per level - ensure max >= min by setting min of max to value of min
149149
minimum_units_per_level = trial.suggest_int('minimum_units_per_level', 1, 3)
@@ -169,7 +169,7 @@ def objective(trial: optuna.Trial) -> float:
169169
# embedding output dim must be an even number
170170
# Maximize EMBEDDING_N based on available RAM and CPU / GPU
171171

172-
EMBEDDING_N = 3 # 12
172+
EMBEDDING_N = trial.suggest_int("embedding_n", 9, 11) # 9 # 3 # 12
173173
EMBEDDING_DIM = int(EMBEDDING_N * 2)
174174

175175
PROJECTION_N = 1 # Punatuve increase of ram, leaving this as 1 until we are running on HPC

0 commit comments

Comments
 (0)