@@ -288,6 +288,7 @@ def __init__(
288288 maximum_units_per_level : int ,
289289 minimum_neurons_per_unit : int ,
290290 maximum_neurons_per_unit : int ,
291+ dataset : tf .data .Dataset = None ,
291292 validation_data : tuple = None ,
292293 activation = 'elu' ,
293294 final_activation = None ,
@@ -356,6 +357,7 @@ def __init__(
356357 self .maximum_units_per_level = maximum_units_per_level
357358 self .minimum_neurons_per_unit = minimum_neurons_per_unit
358359 self .maximum_neurons_per_unit = maximum_neurons_per_unit
360+ self .data_set = data_set
359361 self .activation = activation
360362 self .final_activation = final_activation
361363 self .unit_type = unit_type
@@ -493,15 +495,23 @@ def run_moity_permutations(self, spec, subtrial_number, lock):
493495 print (nnf .materialized_neural_network .summary ())
494496 if self .chart_network_graph :
495497 nnf .get_graph ()
496-
497- history = neural_network .fit (x = self .training_data ,
498- y = self .labels ,
499- epochs = self .epochs ,
500- batch_size = self .batch_size ,
501- # callbacks=[early_stopping,
502- # tensor_board],
503- validation_split = self .validation_split ,
504- validation_data = self .validation_data )
498+ if self .dataset is not None :
499+ history = neural_network .fit (x = self .training_data ,
500+ y = self .labels ,
501+ epochs = self .epochs ,
502+ batch_size = self .batch_size ,
503+ # callbacks=[early_stopping,
504+ # tensor_board],
505+ validation_split = self .validation_split ,
506+ validation_data = self .validation_data )
507+ else :
508+ history = neural_network .fit (dataset = self .dataset ,
509+ epochs = self .epochs ,
510+ batch_size = self .batch_size ,
511+ # callbacks=[early_stopping,
512+ # tensor_board],
513+ validation_split = self .validation_split ,
514+ validation_data = self .validation_data )
505515 oracle_0 = pd .DataFrame (history .history )
506516
507517 model_architectures_folder = f"{ self .project_name } /model_architectures"
0 commit comments