|
| 1 | +/* |
| 2 | + This program demonstrates a minimal example of a Very Small Language Model (VSLM) |
| 3 | + using dlib's deep learning tools. It includes two modes: |
| 4 | +
|
| 5 | + 1) --train : Train a small Transformer-based language model on a character-based |
| 6 | + corpus extracted from "slm_data.h" (named shakespeare_text). |
| 7 | +
|
| 8 | + 2) --generate: Generate new text from a trained model, given an initial prompt |
| 9 | + extracted from "slm_data.h" (named shakespeare_prompt). |
| 10 | +
|
| 11 | + The "slm_dels.h" header is expected to provide a comprehensive Transformer |
| 12 | + definition with the following key elements: |
| 13 | + - A configurable transformer_config |
| 14 | + - The use of classification_head to output a single token |
| 15 | + - The network_type<true> or network_type<false> for training vs inference |
| 16 | + - The typical dlib constructs (input<matrix<int>>, etc.) |
| 17 | +
|
| 18 | + Character-level tokenization is used here. Each character is directly transformed |
| 19 | + into an integer token. The model attempts to learn the sequence of characters in |
| 20 | + shakespeare_text. Then you can ask the model to generate new text from a short |
| 21 | + prompt. |
| 22 | +
|
| 23 | + This model is intentionally kept small (few neurons/parameters) to ensure |
| 24 | + simplicity and efficiency. As a result, it may not generalize well to unseen |
| 25 | + patterns or concepts. However, it effectively illustrates the principle of |
| 26 | + attention and the ability to perfectly memorize and reproduce sequences from |
| 27 | + the training data. This makes it a useful educational tool for understanding |
| 28 | + the mechanics of Transformer models, even if it lacks the capacity for |
| 29 | + sophisticated language understanding. |
| 30 | +*/ |
| 31 | + |
| 32 | +#include <iostream> |
| 33 | +#include <string> |
| 34 | +#include <vector> |
| 35 | +#include <algorithm> |
| 36 | +#include <cmath> |
| 37 | +#include <random> |
| 38 | +#include <dlib/data_io.h> |
| 39 | +#include <dlib/cmd_line_parser.h> |
| 40 | +#include <dlib/misc_api.h> |
| 41 | + |
| 42 | +// Include Transformer definitions |
| 43 | +#include "slm_defs.h" |
| 44 | + |
| 45 | +// This header "slm_data.h" is assumed to contain: |
| 46 | +// const std::string shakespeare_text; |
| 47 | +// const std::string shakespeare_prompt; |
| 48 | +#include "slm_data.h" |
| 49 | + |
| 50 | +// ---------------------------------------------------------------------------------------- |
| 51 | + |
| 52 | +// We treat each character as a token ID in [0..255]. |
| 53 | +const int MAX_TOKEN_ID = 255; |
| 54 | +const int PAD_TOKEN = 256; // an extra "pad" token if needed |
| 55 | + |
| 56 | +// For simplicity, we assume each line from shakespeare_text is appended, ignoring them. |
| 57 | +std::vector<int> char_based_tokenize(const std::string& text) |
| 58 | +{ |
| 59 | + std::vector<int> tokens; |
| 60 | + tokens.reserve(text.size()); |
| 61 | + for (const int c : text) |
| 62 | + { |
| 63 | + tokens.push_back(std::min(c, MAX_TOKEN_ID)); |
| 64 | + } |
| 65 | + return tokens; |
| 66 | +} |
| 67 | + |
| 68 | +// Function to shuffle samples and labels in sync |
| 69 | +void shuffle_samples_and_labels(std::vector<dlib::matrix<int, 0, 1>>& samples, std::vector<unsigned long>& labels) { |
| 70 | + std::vector<size_t> indices(samples.size()); |
| 71 | + std::iota(indices.begin(), indices.end(), 0); // Fill with 0, 1, 2, ..., N-1 |
| 72 | + std::shuffle(indices.begin(), indices.end(), std::default_random_engine{}); |
| 73 | + |
| 74 | + // Create temporary vectors to hold shuffled data |
| 75 | + std::vector<dlib::matrix<int, 0, 1>> shuffled_samples(samples.size()); |
| 76 | + std::vector<unsigned long> shuffled_labels(labels.size()); |
| 77 | + |
| 78 | + // Apply the shuffle |
| 79 | + for (size_t i = 0; i < indices.size(); ++i) |
| 80 | + { |
| 81 | + shuffled_samples[i] = samples[indices[i]]; |
| 82 | + shuffled_labels[i] = labels[indices[i]]; |
| 83 | + } |
| 84 | + |
| 85 | + // Replace the original data with shuffled data |
| 86 | + samples = std::move(shuffled_samples); |
| 87 | + labels = std::move(shuffled_labels); |
| 88 | +} |
| 89 | + |
| 90 | +// ---------------------------------------------------------------------------------------- |
| 91 | + |
| 92 | +int main(int argc, char** argv) |
| 93 | +{ |
| 94 | + try |
| 95 | + { |
| 96 | + dlib::command_line_parser parser; |
| 97 | + parser.add_option("train", "Train a small transformer on the built-in Shakespeare text"); |
| 98 | + parser.add_option("generate", "Generate text from a previously trained model (needs shakespeare_prompt)"); |
| 99 | + parser.add_option("learning-rate", "Set the learning rate for training (default: 1e-4)", 1); |
| 100 | + parser.add_option("batch-size", "Set the mini-batch size for training (default: 64)", 1); |
| 101 | + parser.add_option("generation-length", "Set the length of generated text (default: 400)", 1); |
| 102 | + parser.add_option("alpha", "Set the initial learning rate for Adam optimizer (default: 0.004)", 1); |
| 103 | + parser.add_option("beta1", "Set the decay rate for the first moment estimate (default: 0.9)", 1); |
| 104 | + parser.add_option("beta2", "Set the decay rate for the second moment estimate (default: 0.999)", 1); |
| 105 | + parser.add_option("max-samples", "Set the maximum number of training samples (default: 50000)", 1); |
| 106 | + parser.add_option("shuffle", "Shuffle training sequences and labels before training (default: false)"); |
| 107 | + parser.parse(argc, argv); |
| 108 | + |
| 109 | + if (parser.number_of_arguments() == 0 && !parser.option("train") && !parser.option("generate")) |
| 110 | + { |
| 111 | + parser.print_options(); |
| 112 | + return 0; |
| 113 | + } |
| 114 | + |
| 115 | + // Default values |
| 116 | + const double learning_rate = get_option(parser, "learning-rate", 1e-4); |
| 117 | + const long batch_size = get_option(parser, "batch-size", 64); |
| 118 | + const int generation_length = get_option(parser, "generation-length", 400); |
| 119 | + const double alpha = get_option(parser, "alpha", 0.004); // Initial learning rate for Adam |
| 120 | + const double beta1 = get_option(parser, "beta1", 0.9); // Decay rate for the first moment estimate |
| 121 | + const double beta2 = get_option(parser, "beta2", 0.999); // Decay rate for the second moment estimate |
| 122 | + const size_t max_samples = get_option(parser, "max-samples",50000); // Default maximum number of training samples |
| 123 | + |
| 124 | + // We define a minimal config for demonstration |
| 125 | + const long vocab_size = 257; // 0..255 for chars + 1 pad token |
| 126 | + const long num_layers = 3; |
| 127 | + const long num_heads = 4; |
| 128 | + const long embedding_dim = 64; |
| 129 | + const long max_seq_len = 80; // a small sequence length for the example |
| 130 | + const bool use_squeezing = false; |
| 131 | + |
| 132 | + using my_transformer_cfg = transformer::transformer_config< |
| 133 | + vocab_size, |
| 134 | + num_layers, |
| 135 | + num_heads, |
| 136 | + embedding_dim, |
| 137 | + max_seq_len, |
| 138 | + use_squeezing, |
| 139 | + dlib::gelu, |
| 140 | + dlib::dropout_10 |
| 141 | + >; |
| 142 | + |
| 143 | + // For GPU usage (if any), set gpus = {0} for a single GPU, etc. |
| 144 | + std::vector<int> gpus{ 0 }; |
| 145 | + |
| 146 | + // The model file to store or load |
| 147 | + const std::string model_file = "shakespeare_lm_char_model.dat"; |
| 148 | + |
| 149 | + // ---------------------------------------------------------------------------------------- |
| 150 | + // Train mode |
| 151 | + // ---------------------------------------------------------------------------------------- |
| 152 | + if (parser.option("train")) |
| 153 | + { |
| 154 | + std::cout << "=== TRAIN MODE ===\n"; |
| 155 | + |
| 156 | + // 1) Prepare training data (simple approach) |
| 157 | + // We will store characters from shakespeare_text into a vector |
| 158 | + // and then produce training samples of length (max_seq_len+1), |
| 159 | + // where the last token is the label to predict from the preceding max_seq_len. |
| 160 | + auto full_tokens = char_based_tokenize(shakespeare_text); |
| 161 | + if (full_tokens.empty()) |
| 162 | + { |
| 163 | + std::cerr << "ERROR: The Shakespeare text is empty. Please provide a valid training text.\n"; |
| 164 | + return 0; |
| 165 | + } |
| 166 | + |
| 167 | + // Calculate the maximum number of sequences |
| 168 | + size_t max_sequences = (full_tokens.size() > (size_t)max_seq_len + 1) |
| 169 | + ? (full_tokens.size() - ((size_t)max_seq_len + 1)) |
| 170 | + : 0; |
| 171 | + |
| 172 | + // Display the size of the training text and the number of sequences |
| 173 | + std::cout << "Training text size: " << full_tokens.size() << " characters\n"; |
| 174 | + std::cout << "Maximum number of sequences: " << max_sequences << "\n"; |
| 175 | + |
| 176 | + // Check if the text is too short |
| 177 | + if (max_sequences == 0) |
| 178 | + { |
| 179 | + std::cerr << "ERROR: The Shakespeare text is too short for training. It must contain at least " |
| 180 | + << (max_seq_len + 1) << " characters.\n"; |
| 181 | + return 0; |
| 182 | + } |
| 183 | + |
| 184 | + std::vector<dlib::matrix<int, 0, 1>> samples; |
| 185 | + std::vector<unsigned long> labels; |
| 186 | + |
| 187 | + // Let's create a training set of about (N) samples from the text |
| 188 | + // Each sample: [x0, x1, ..., x_(max_seq_len-1)] -> y |
| 189 | + // We'll store them in "samples" and "labels". |
| 190 | + const size_t N = (max_sequences < max_samples) ? max_sequences : max_samples; |
| 191 | + for (size_t start = 0; start < N; ++start) |
| 192 | + { |
| 193 | + dlib::matrix<int, 0, 1> seq(max_seq_len, 1); |
| 194 | + for (long t = 0; t < max_seq_len; ++t) |
| 195 | + seq(t, 0) = full_tokens[start + t]; |
| 196 | + samples.push_back(seq); |
| 197 | + labels.push_back(full_tokens[start + max_seq_len]); |
| 198 | + } |
| 199 | + |
| 200 | + // Shuffle samples and labels if the --shuffle option is enabled |
| 201 | + if (parser.option("shuffle")) |
| 202 | + { |
| 203 | + std::cout << "Shuffling training sequences and labels...\n"; |
| 204 | + shuffle_samples_and_labels(samples, labels); |
| 205 | + } |
| 206 | + |
| 207 | + // 3) Construct the network in training mode |
| 208 | + using net_type = my_transformer_cfg::network_type<true>; |
| 209 | + net_type net; |
| 210 | + if (dlib::file_exists(model_file)) |
| 211 | + dlib::deserialize(model_file) >> net; |
| 212 | + |
| 213 | + // 4) Create dnn_trainer |
| 214 | + dlib::dnn_trainer<net_type, dlib::adam> trainer(net, dlib::adam(alpha, beta1, beta2), gpus); |
| 215 | + trainer.set_learning_rate(learning_rate); |
| 216 | + trainer.set_min_learning_rate(1e-6); |
| 217 | + trainer.set_mini_batch_size(batch_size); |
| 218 | + trainer.set_iterations_without_progress_threshold(15000); |
| 219 | + trainer.set_max_num_epochs(400); |
| 220 | + trainer.be_verbose(); |
| 221 | + |
| 222 | + // 5) Train |
| 223 | + trainer.train(samples, labels); |
| 224 | + |
| 225 | + // 6) Evaluate quickly on the training set |
| 226 | + auto predicted = net(samples); |
| 227 | + size_t correct = 0; |
| 228 | + for (size_t i = 0; i < labels.size(); ++i) |
| 229 | + if (predicted[i] == labels[i]) |
| 230 | + correct++; |
| 231 | + double accuracy = (double)correct / labels.size(); |
| 232 | + std::cout << "Training accuracy (on this sample set): " << accuracy << "\n"; |
| 233 | + |
| 234 | + // 7) Save the model |
| 235 | + net.clean(); |
| 236 | + dlib::serialize(model_file) << net; |
| 237 | + std::cout << "Model saved to " << model_file << "\n"; |
| 238 | + } |
| 239 | + |
| 240 | + // ---------------------------------------------------------------------------------------- |
| 241 | + // Generate mode |
| 242 | + // ---------------------------------------------------------------------------------------- |
| 243 | + if (parser.option("generate")) |
| 244 | + { |
| 245 | + std::cout << "=== GENERATE MODE ===\n"; |
| 246 | + // 1) Load the trained model |
| 247 | + using net_infer = my_transformer_cfg::network_type<false>; |
| 248 | + net_infer net; |
| 249 | + if (dlib::file_exists(model_file)) |
| 250 | + { |
| 251 | + dlib::deserialize(model_file) >> net; |
| 252 | + std::cout << "Loaded model from " << model_file << "\n"; |
| 253 | + } |
| 254 | + else |
| 255 | + { |
| 256 | + std::cerr << "Error: model file not found. Please run --train first.\n"; |
| 257 | + return 0; |
| 258 | + } |
| 259 | + std::cout << my_transformer_cfg::model_info::describe() << std::endl; |
| 260 | + std::cout << "Model parameters: " << count_parameters(net) << std::endl << std::endl; |
| 261 | + |
| 262 | + // 2) Get the prompt from the included slm_data.h |
| 263 | + std::string prompt_text = shakespeare_prompt; |
| 264 | + if (prompt_text.empty()) |
| 265 | + { |
| 266 | + std::cerr << "No prompt found in slm_data.h.\n"; |
| 267 | + return 0; |
| 268 | + } |
| 269 | + // If prompt is longer than max_seq_len, we keep only the first window |
| 270 | + if (prompt_text.size() > (size_t)max_seq_len) |
| 271 | + prompt_text.erase(prompt_text.begin() + max_seq_len, prompt_text.end()); |
| 272 | + |
| 273 | + // Convert prompt to a token sequence |
| 274 | + const auto prompt_tokens = char_based_tokenize(prompt_text); |
| 275 | + |
| 276 | + // Put into a dlib matrix |
| 277 | + dlib::matrix<int, 0, 1> input_seq(max_seq_len, 1); |
| 278 | + // Fill with pad if prompt is shorter than max_seq_len |
| 279 | + for (long i = 0; i < max_seq_len; ++i) |
| 280 | + { |
| 281 | + if ((size_t)i < prompt_tokens.size()) |
| 282 | + input_seq(i, 0) = prompt_tokens[i]; |
| 283 | + else |
| 284 | + input_seq(i, 0) = PAD_TOKEN; |
| 285 | + } |
| 286 | + |
| 287 | + std::cout << "\nInitial prompt:\n" << prompt_text << " (...)\n\n\nGenerated text:\n" << prompt_text; |
| 288 | + |
| 289 | + // 3) Generate new text |
| 290 | + // We'll predict one character at a time, then shift the window |
| 291 | + for (int i = 0; i < generation_length; ++i) |
| 292 | + { |
| 293 | + const int next_char = net(input_seq); // single inference |
| 294 | + |
| 295 | + // Print the generated character |
| 296 | + std::cout << static_cast<char>(std::min(next_char, MAX_TOKEN_ID)) << std::flush; |
| 297 | + |
| 298 | + // Shift left by 1 |
| 299 | + for (long i = 0; i < max_seq_len - 1; ++i) |
| 300 | + input_seq(i, 0) = input_seq(i + 1, 0); |
| 301 | + input_seq(max_seq_len - 1, 0) = std::min(next_char, MAX_TOKEN_ID); |
| 302 | + } |
| 303 | + |
| 304 | + std::cout << "\n\n(end of generation)\n"; |
| 305 | + } |
| 306 | + |
| 307 | + return 0; |
| 308 | + } |
| 309 | + catch (std::exception& e) |
| 310 | + { |
| 311 | + std::cerr << "Exception thrown: " << e.what() << std::endl; |
| 312 | + return 1; |
| 313 | + } |
| 314 | +} |
| 315 | + |
| 316 | +/* |
| 317 | + * This program demonstrates the training of a language model on about 15k sequences. |
| 318 | + * The training process produces a data file of approximately 32MB on disk. |
| 319 | + * |
| 320 | + * - Transformer model configuration: |
| 321 | + * + vocabulary size: 257 |
| 322 | + * + layers: 3 |
| 323 | + * + attention heads: 4 |
| 324 | + * + embedding dimension: 64 |
| 325 | + * + max sequence length: 80 |
| 326 | + * - Number of parameters: 8,247,496 |
| 327 | + * |
| 328 | + * The training cab be done using the following command line: |
| 329 | + * >./slm_basic_train_ex --train --shuffle |
| 330 | + * |
| 331 | + * After this phase, the model achieves perfect prediction accuracy (i.e acc=1). |
| 332 | + * The generation option produces text that is very close to the original training data, |
| 333 | + * as illustrated by the example below: |
| 334 | + * > Generated text: |
| 335 | + * > QUEEN ELIZABETH: |
| 336 | + * > But thou didst kill my children. |
| 337 | + * > |
| 338 | + * > KING RICHARD III: |
| 339 | + * > But in your daughter's womb I bury them: |
| 340 | + * > Where in that nest of spicery they shall breed |
| 341 | + * > Selves of themselves, to your recomforture. |
| 342 | + * > |
| 343 | + * > QUEEN ELIZABETH: |
| 344 | + * > Shall I go win my daughter to thy will? |
| 345 | + * > |
| 346 | + * > KING RICHARD III: |
| 347 | + * > And be a happy mother by the deed. |
| 348 | + * > |
| 349 | + * > QUEEN ELIZABETH: |
| 350 | + * > I go. Write to me very shortly. |
| 351 | + * > And you shall understand from me her mind. |
| 352 | + */ |
0 commit comments