|
| 1 | +/* |
| 2 | + * SPDX-License-Identifier: MIT |
| 3 | + * Copyright (c) "2025" . The DeepCausality Authors and Contributors. All Rights Reserved. |
| 4 | + */ |
| 5 | + |
| 6 | +use deep_causality::*; |
| 7 | +use std::sync::Arc; |
| 8 | + |
| 9 | +// Define IDs for different data types within the context |
| 10 | +const AGE_ID: IdentificationValue = 1; |
| 11 | +const INITIAL_BP_ID: IdentificationValue = 2; |
| 12 | +const DRUG_ADMINISTERED_ID: IdentificationValue = 3; |
| 13 | + |
| 14 | +// Define ID for the causaloid |
| 15 | +const DRUG_EFFECT_CAUSALOID_ID: IdentificationValue = 10; |
| 16 | + |
| 17 | +fn main() { |
| 18 | + println!("\n--- CATE Example: Effect of Medication on Blood Pressure for Patients > 65 ---"); |
| 19 | + |
| 20 | + // 1. Define the population of patients |
| 21 | + let patient_population = create_patient_population(); |
| 22 | + println!( |
| 23 | + "Created a population of {} patients.", |
| 24 | + patient_population.len() |
| 25 | + ); |
| 26 | + |
| 27 | + // 2. Select the subgroup of interest (patients over 65) |
| 28 | + let subgroup: Vec<&BaseContext> = patient_population |
| 29 | + .iter() |
| 30 | + .filter(|ctx| { |
| 31 | + for i in 0..ctx.number_of_nodes() { |
| 32 | + if let Some(node) = ctx.get_node(i) { |
| 33 | + if let ContextoidType::Datoid(data_node) = node.vertex_type() { |
| 34 | + if data_node.id() == AGE_ID && data_node.get_data() > 65.0 { |
| 35 | + return true; |
| 36 | + } |
| 37 | + } |
| 38 | + } |
| 39 | + } |
| 40 | + false |
| 41 | + }) |
| 42 | + .collect(); |
| 43 | + println!( |
| 44 | + "Found {} patients in the subgroup (age > 65).", |
| 45 | + subgroup.len() |
| 46 | + ); |
| 47 | + |
| 48 | + // 3. Run parallel counterfactuals for the subgroup |
| 49 | + let mut ites: Vec<f64> = Vec::new(); // To store Individual Treatment Effects |
| 50 | + |
| 51 | + for patient_context in subgroup { |
| 52 | + let initial_bp = get_patient_bp(patient_context).unwrap_or(140.0); |
| 53 | + |
| 54 | + // --- Create Counterfactual Contexts --- |
| 55 | + let mut treatment_context = patient_context.clone(); |
| 56 | + let drug_datoid = Contextoid::new( |
| 57 | + DRUG_ADMINISTERED_ID, |
| 58 | + ContextoidType::Datoid(Data::new(DRUG_ADMINISTERED_ID, 1.0)), // drug_administered = true |
| 59 | + ); |
| 60 | + treatment_context.add_node(drug_datoid).unwrap(); |
| 61 | + |
| 62 | + let mut control_context = patient_context.clone(); |
| 63 | + let no_drug_datoid = Contextoid::new( |
| 64 | + DRUG_ADMINISTERED_ID, |
| 65 | + ContextoidType::Datoid(Data::new(DRUG_ADMINISTERED_ID, 0.0)), // drug_administered = false |
| 66 | + ); |
| 67 | + control_context.add_node(no_drug_datoid).unwrap(); |
| 68 | + |
| 69 | + // --- Instantiate Causaloids for each scenario --- |
| 70 | + let treatment_causaloid = Causaloid::new_with_context( |
| 71 | + DRUG_EFFECT_CAUSALOID_ID, |
| 72 | + drug_effect_logic, |
| 73 | + Arc::new(treatment_context), |
| 74 | + "Drug effect under treatment", |
| 75 | + ); |
| 76 | + |
| 77 | + let control_causaloid = Causaloid::new_with_context( |
| 78 | + DRUG_EFFECT_CAUSALOID_ID, |
| 79 | + drug_effect_logic, |
| 80 | + Arc::new(control_context), |
| 81 | + "Drug effect under control", |
| 82 | + ); |
| 83 | + |
| 84 | + // --- Evaluate Potential Outcomes --- |
| 85 | + // The input effect is the patient's initial BP. |
| 86 | + let input_effect = PropagatingEffect::Numerical(initial_bp); |
| 87 | + |
| 88 | + let y1_effect = treatment_causaloid |
| 89 | + .evaluate(&input_effect) |
| 90 | + .unwrap() |
| 91 | + .as_numerical() |
| 92 | + .unwrap(); |
| 93 | + let y0_effect = control_causaloid |
| 94 | + .evaluate(&input_effect) |
| 95 | + .unwrap() |
| 96 | + .as_numerical() |
| 97 | + .unwrap(); |
| 98 | + |
| 99 | + let y1 = initial_bp + y1_effect; // Potential outcome if treated |
| 100 | + let y0 = initial_bp + y0_effect; // Potential outcome if not treated |
| 101 | + |
| 102 | + // --- Calculate and Store ITE --- |
| 103 | + let ite = y1 - y0; |
| 104 | + ites.push(ite); |
| 105 | + } |
| 106 | + |
| 107 | + // 4. Aggregate and Conclude |
| 108 | + if !ites.is_empty() { |
| 109 | + let cate: f64 = ites.iter().sum::<f64>() / ites.len() as f64; |
| 110 | + println!("\n--- CATE Calculation Result ---"); |
| 111 | + println!( |
| 112 | + "The Conditional Average Treatment Effect (CATE) for patients over 65 is: {:.2}", |
| 113 | + cate |
| 114 | + ); |
| 115 | + } else { |
| 116 | + println!("\nNo patients found in the subgroup to calculate CATE."); |
| 117 | + } |
| 118 | +} |
| 119 | + |
| 120 | +/// The causal logic for the drug's effect. |
| 121 | +/// This function checks the context to see if the drug was administered and returns the effect on blood pressure. |
| 122 | +fn drug_effect_logic( |
| 123 | + _effect: &PropagatingEffect, // We don't need the incoming effect for this simple model |
| 124 | + context: &Arc<BaseContext>, |
| 125 | +) -> Result<PropagatingEffect, CausalityError> { |
| 126 | + let mut drug_administered = false; |
| 127 | + |
| 128 | + // Search the context for the DRUG_ADMINISTERED_ID flag. |
| 129 | + for i in 0..context.number_of_nodes() { |
| 130 | + if let Some(node) = context.get_node(i) { |
| 131 | + if let ContextoidType::Datoid(data_node) = node.vertex_type() { |
| 132 | + if data_node.id() == DRUG_ADMINISTERED_ID && data_node.get_data() == 1.0 { |
| 133 | + drug_administered = true; |
| 134 | + break; |
| 135 | + } |
| 136 | + } |
| 137 | + } |
| 138 | + } |
| 139 | + |
| 140 | + if drug_administered { |
| 141 | + // If the drug was given, it causes a 10-point drop in blood pressure. |
| 142 | + Ok(PropagatingEffect::Numerical(-10.0)) |
| 143 | + } else { |
| 144 | + // If no drug was given, there is no effect. |
| 145 | + Ok(PropagatingEffect::Numerical(0.0)) |
| 146 | + } |
| 147 | +} |
| 148 | + |
| 149 | +/// Creates a sample population of patients with different ages and blood pressures. |
| 150 | +fn create_patient_population() -> Vec<BaseContext> { |
| 151 | + let mut population = Vec::new(); |
| 152 | + let mut patient_id_counter = 1; |
| 153 | + |
| 154 | + // Tuples of (age, initial_bp) |
| 155 | + let patient_data = vec![ |
| 156 | + (55.0, 145.0), |
| 157 | + (70.0, 150.0), |
| 158 | + (68.0, 155.0), |
| 159 | + (45.0, 130.0), |
| 160 | + (80.0, 160.0), |
| 161 | + (72.0, 148.0), |
| 162 | + (60.0, 140.0), |
| 163 | + ]; |
| 164 | + |
| 165 | + for (age, bp) in patient_data { |
| 166 | + let mut context = BaseContext::with_capacity(patient_id_counter, "Patient", 5); |
| 167 | + patient_id_counter += 1; |
| 168 | + |
| 169 | + let age_datoid = Contextoid::new( |
| 170 | + patient_id_counter, |
| 171 | + ContextoidType::Datoid(Data::new(AGE_ID, age)), |
| 172 | + ); |
| 173 | + context.add_node(age_datoid).unwrap(); |
| 174 | + patient_id_counter += 1; |
| 175 | + |
| 176 | + let bp_datoid = Contextoid::new( |
| 177 | + patient_id_counter, |
| 178 | + ContextoidType::Datoid(Data::new(INITIAL_BP_ID, bp)), |
| 179 | + ); |
| 180 | + context.add_node(bp_datoid).unwrap(); |
| 181 | + patient_id_counter += 1; |
| 182 | + |
| 183 | + population.push(context); |
| 184 | + } |
| 185 | + |
| 186 | + population |
| 187 | +} |
| 188 | + |
| 189 | +/// Helper to extract the initial blood pressure from a patient's context. |
| 190 | +fn get_patient_bp(context: &BaseContext) -> Option<f64> { |
| 191 | + for i in 0..context.number_of_nodes() { |
| 192 | + if let Some(node) = context.get_node(i) { |
| 193 | + if let ContextoidType::Datoid(data_node) = node.vertex_type() { |
| 194 | + if data_node.id() == INITIAL_BP_ID { |
| 195 | + return Some(data_node.get_data()); |
| 196 | + } |
| 197 | + } |
| 198 | + } |
| 199 | + } |
| 200 | + None |
| 201 | +} |
0 commit comments