|
| 1 | +package org.deeplearning4j.examples.samediff.tfimport; |
| 2 | + |
| 3 | +import java.io.File; |
| 4 | +import java.io.IOException; |
| 5 | +import java.net.URL; |
| 6 | +import java.util.Arrays; |
| 7 | +import org.apache.commons.io.FilenameUtils; |
| 8 | +import org.datavec.image.loader.ImageLoader; |
| 9 | +import org.deeplearning4j.zoo.model.helper.InceptionResNetHelper; |
| 10 | +import org.deeplearning4j.zoo.util.imagenet.ImageNetLabels; |
| 11 | +import org.nd4j.autodiff.samediff.SameDiff; |
| 12 | +import org.nd4j.linalg.api.ndarray.INDArray; |
| 13 | +import org.nd4j.linalg.api.ops.DynamicCustomOp; |
| 14 | +import org.nd4j.linalg.factory.Nd4j; |
| 15 | +import org.nd4j.linalg.indexing.INDArrayIndex; |
| 16 | +import org.nd4j.linalg.indexing.NDArrayIndex; |
| 17 | +import org.nd4j.resources.Downloader; |
| 18 | + |
| 19 | +/** |
| 20 | + * This example shows the ability to import and use Tensorflow models, specifically mobilenet, and use them for inference. |
| 21 | + */ |
| 22 | +public class SameDiffTFImportMobileNetExample { |
| 23 | + |
| 24 | + public static void main(String[] args) throws Exception { |
| 25 | + |
| 26 | + // download and extract a tensorflow frozen model file (usually a .pb file) |
| 27 | + File modelFile = downloadModel(); |
| 28 | + |
| 29 | + // import the frozen model into a SameDiff instance |
| 30 | + SameDiff sd = SameDiff.importFrozenTF(modelFile); |
| 31 | + |
| 32 | + System.out.println(sd.summary()); |
| 33 | + |
| 34 | + System.out.println("\n\n"); |
| 35 | + |
| 36 | + // get the image from https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/img/image2.jpg for testing |
| 37 | + INDArray testImage = getTestImage(); |
| 38 | + |
| 39 | + // preprocess image with inception preprocessing |
| 40 | + INDArray preprocessedImage = inceptionPreprocessing(testImage, 224, 224); |
| 41 | + |
| 42 | + // Input and output names are found by looking at sd.summary() (printed earlyer). |
| 43 | + // The input variable is the output of no ops, and the output variable is the input of no ops. |
| 44 | + |
| 45 | + // Alternatively, you can use sd.outputs() and sd.inputs(). |
| 46 | + |
| 47 | + System.out.println("Input: " + sd.inputs()); |
| 48 | + System.out.println("Output: " + sd.outputs()); |
| 49 | + |
| 50 | + // Do inference for a single batch. |
| 51 | + INDArray out = sd.batchOutput() |
| 52 | + .input("input", preprocessedImage) |
| 53 | + .output("MobilenetV2/Predictions/Reshape_1") |
| 54 | + .execSingle(); |
| 55 | + |
| 56 | + // ignore label 0 (the background label) |
| 57 | + out = out.get(NDArrayIndex.all(), NDArrayIndex.interval(1, 1001)); |
| 58 | + |
| 59 | + // get the readable label for the classes |
| 60 | + String label = new ImageNetLabels().decodePredictions(out); |
| 61 | + |
| 62 | + System.out.println("Predictions: " + label); |
| 63 | + |
| 64 | + } |
| 65 | + |
| 66 | + |
| 67 | + |
| 68 | + public static String MODEL_URL = "https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_224.tgz"; |
| 69 | + |
| 70 | + // download and extract the model file in the ~/dl4j-examples-data directory used by other examples |
| 71 | + public static File downloadModel() throws Exception{ |
| 72 | + String dataDir = FilenameUtils.concat(System.getProperty("user.home"), "dl4j-examples-data/tf_resnet"); |
| 73 | + String modelFile = FilenameUtils.concat(dataDir, "mobilenet_v2_1.0_224.tgz"); |
| 74 | + |
| 75 | + File frozenFile = new File(FilenameUtils.concat(dataDir, "mobilenet_v2_1.0_224_frozen.pb")); |
| 76 | + |
| 77 | + if(frozenFile.exists()){ |
| 78 | + return frozenFile; |
| 79 | + } |
| 80 | + |
| 81 | + Downloader.downloadAndExtract("tf_resnet", new URL(MODEL_URL), new File(modelFile), new File(dataDir), "519bba7052fd279c66d2a28dc3f51f46", 5); |
| 82 | + |
| 83 | + return frozenFile; |
| 84 | + } |
| 85 | + |
| 86 | + // gets the image we use to test the network. |
| 87 | + // This isn't a single class ImageNet image, so it won't do very well, but it will at least classify it as a dog or a cat. |
| 88 | + public static INDArray getTestImage() throws IOException { |
| 89 | + URL url = new URL("https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/img/image2.jpg?raw=true"); |
| 90 | + return new ImageLoader(358, 500, 3).asMatrix(url.openStream()); |
| 91 | + } |
| 92 | + |
| 93 | + /** |
| 94 | + * Does inception preprocessing. Takes an image with shape [c, h, w] |
| 95 | + * and returns an image with shape [1, height, width, c]. |
| 96 | + * |
| 97 | + * Eventually this will be made part of DL4J. |
| 98 | + * |
| 99 | + * @param height the height to resize to |
| 100 | + * @param width the width to resize to |
| 101 | + */ |
| 102 | + public static INDArray inceptionPreprocessing(INDArray img, int height, int width){ |
| 103 | + // add batch dimension |
| 104 | + img = Nd4j.expandDims(img, 0); |
| 105 | + |
| 106 | + // change to channels-last |
| 107 | + img = img.permute(0, 2, 3, 1); |
| 108 | + |
| 109 | + // normalize to 0-1 |
| 110 | + img = img.div(256); |
| 111 | + |
| 112 | + // resize |
| 113 | + INDArray preprocessedImage = Nd4j.createUninitialized(1, height, width, 3); |
| 114 | + |
| 115 | + DynamicCustomOp op = DynamicCustomOp.builder("resize_bilinear") |
| 116 | + .addInputs(img) |
| 117 | + .addOutputs(preprocessedImage) |
| 118 | + .addIntegerArguments(height, width).build(); |
| 119 | + Nd4j.exec(op); |
| 120 | + |
| 121 | + // finish preprocessing |
| 122 | + preprocessedImage = preprocessedImage.sub(0.5); |
| 123 | + preprocessedImage = preprocessedImage.mul(2); |
| 124 | + return preprocessedImage; |
| 125 | + } |
| 126 | + |
| 127 | +} |
0 commit comments