Skip to content

Commit 76d4760

Browse files
committed
Fix typo
Signed-off-by: Paul Dubs <[email protected]>
1 parent ceb30da commit 76d4760

File tree

8 files changed

+165
-165
lines changed

8 files changed

+165
-165
lines changed

arbiter-examples/README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,17 @@
11
## Eclipse Deeplearning4j: Arbiter Examples
22

33
This project contains a set of examples that demonstrate useage of the Arbiter library for hyperparameter tuning of Deeplearning4J models. More information on Arbiter can be found [here](https://deeplearning4j.konduit.ai/arbiter/overview).
4-
5-
[Go back](../README.md) to the main repository page to explore other features/functionality of the **Eclipse DeeplearningJ** ecosystem. File an issue [here](https://github.com/eclipse/deeplearning4j-examples/issues) to request new features.
4+
5+
[Go back](../README.md) to the main repository page to explore other features/functionality of the **Eclipse Deeplearning4J** ecosystem. File an issue [here](https://github.com/eclipse/deeplearning4j-examples/issues) to request new features.
66

77
The examples in this project and what they demonstrate are briefly described below. This is also the recommended order to explore them in.
88

99
### Quickstart
10-
* [BasicHyperparameterOptimizationExample.java](./src/main/java/org/deeplearning4j/arbiterexamples/quickstart/BasicHyperparameterOptimizationExample.java)
10+
* [BasicHyperparameterOptimizationExample.java](./src/main/java/org/deeplearning4j/arbiterexamples/quickstart/BasicHyperparameterOptimizationExample.java)
1111
Conduct random search on two network hyperparameters, and display the search progress in the Arbiter web-based UI.
1212

1313
### Advanced
14-
* [BaseGeneticHyperparameterOptimizationExample.java](./src/main/java/org/deeplearning4j/arbiterexamples/advanced/genetic/BaseGeneticHyperparameterOptimizationExample.java)
14+
* [BaseGeneticHyperparameterOptimizationExample.java](./src/main/java/org/deeplearning4j/arbiterexamples/advanced/genetic/BaseGeneticHyperparameterOptimizationExample.java)
1515
Basic hyperparameter optimization example using the genetic candidate generator of Arbiter to conduct a search.
16-
* [CustomGeneticHyperparameterOptimizationExample.java](./src/main/java/org/deeplearning4j/arbiterexamples/advanced/genetic/CustomGeneticHyperparameterOptimizationExample.java)
16+
* [CustomGeneticHyperparameterOptimizationExample.java](./src/main/java/org/deeplearning4j/arbiterexamples/advanced/genetic/CustomGeneticHyperparameterOptimizationExample.java)
1717
Change the default behavior of the genetic candidate generator.

cuda-specific-examples/README.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,26 +1,26 @@
1-
## Eclipse Deeplearning4j: CUDA Specific Examples
1+
## Eclipse Deeplearning4j: CUDA Specific Examples
22

33
Switching from a CPU only backend to a GPU backend is as simple as changing one dependency - one line in the pom.xml file for Maven users. Instead of specifying the nd4j-native-platform module specify the nd4j-cuda-X-platform where X indicated the version of CUDA. It is recommended to install cuDNN for better GPU performance. Runs will log warnings if cuDNN is not found. For more information, please refer to documentation [here](https://deeplearning4j.org/docs/latest/deeplearning4j-config-cudnn)
44

55
Users with acces to multiple gpus systems can use DL4J to further speed up the training process by training the models in parallel on them. Ideally these GPUs have the same speed and networking capabilities. This project contains a set of examples that demonstrate how to leverage performance from a multiple gpus setup. More documentation can be found [here](https://deeplearning4j.konduit.ai/getting-started/tutorials/using-multiple-gpus)
66

7-
[Go back](../README.md) to the main repository page to explore other features/functionality of the **Eclipse DeeplearningJ** ecosystem. File an issue [here](https://github.com/eclipse/deeplearning4j-examples/issues) to request new features.
8-
7+
[Go back](../README.md) to the main repository page to explore other features/functionality of the **Eclipse Deeplearning4J** ecosystem. File an issue [here](https://github.com/eclipse/deeplearning4j-examples/issues) to request new features.
8+
99
The list of examples in this project and what they demonstrate are briefly described below. This is also the recommended order to explore them in.
1010

1111
## QUICKSTART
12-
* [MultiGPULeNetMNIST.java](./src/main/java/org/deeplearning4j/examples/multigpu/quickstart/MultiGPULeNetMNIST.java)
12+
* [MultiGPULeNetMNIST.java](./src/main/java/org/deeplearning4j/examples/multigpu/quickstart/MultiGPULeNetMNIST.java)
1313
Introduction to ParallelWrapper by modifying the original [LenetMnistExample](./../dl4j-examples/src/main/java/org/deeplearning4j/examples/quickstart/modeling/convolution/LeNetMNIST.java)
14-
* [GradientsSharingLeNetMNIST.java](./src/main/java/org/deeplearning4j/examples/multigpu/quickstart/GradientsSharingLeNetMNIST.java)
14+
* [GradientsSharingLeNetMNIST.java](./src/main/java/org/deeplearning4j/examples/multigpu/quickstart/GradientsSharingLeNetMNIST.java)
1515
Uses gradient sharing instead of the default averaging every n iterations. More information on the gradient sharing algorithm can be found [here](https://deeplearning4j.konduit.ai/distributed-deep-learning/intro)
16-
* [GradientSharingVGG16TinyImageNet.java](./src/main/java/org/deeplearning4j/examples/multigpu/quickstart/GradientSharingVGG16TinyImageNet.java)
16+
* [GradientSharingVGG16TinyImageNet.java](./src/main/java/org/deeplearning4j/examples/multigpu/quickstart/GradientSharingVGG16TinyImageNet.java)
1717
Gradient sharing with VGG16 on TinyImageNet
1818

1919
## ADVANCED
20-
* [ImdbReviewClassificationRNN.java](./src/main/java/org/deeplearning4j/examples/multigpu/advanced/w2vsentiment/ImdbReviewClassificationRNN.java)
20+
* [ImdbReviewClassificationRNN.java](./src/main/java/org/deeplearning4j/examples/multigpu/advanced/w2vsentiment/ImdbReviewClassificationRNN.java)
2121
A multiple gpus version of the example of the same name in the dl4j-examples repo [here](./../dl4j-examples//src/main/java/org/deeplearning4j/examples/advanced/modelling/textclassification/pretrainedword2vec/ImdbReviewClassificationRNN.java) This example also includes how to presave the dataset to save time when training on multiple epochs.
22-
* [GenerateTxtModel.java](./src/main/java/org/deeplearning4j/examples/multigpu/advanced/charmodelling/GenerateTxtModel.java)
22+
* [GenerateTxtModel.java](./src/main/java/org/deeplearning4j/examples/multigpu/advanced/charmodelling/GenerateTxtModel.java)
2323
CharModelling: A multiple gpus version of the example of the same name in the dl4j-examples repo, [here](./../dl4j-examples/src/main/java/org/deeplearning4j/examples/advanced/modelling/charmodelling/generatetext/GenerateTxtModel.java).
24-
* [FeaturizedPreSave.java](./src/main/java/org/deeplearning4j/examples/multigpu/advanced/transferlearning/vgg16/FeaturizedPreSave.java) & [FitFromFeaturized.java](./src/main/java/org/deeplearning4j/examples/multigpu/advanced/transferlearning/vgg16/FitFromFeaturized.java)
24+
* [FeaturizedPreSave.java](./src/main/java/org/deeplearning4j/examples/multigpu/advanced/transferlearning/vgg16/FeaturizedPreSave.java) & [FitFromFeaturized.java](./src/main/java/org/deeplearning4j/examples/multigpu/advanced/transferlearning/vgg16/FitFromFeaturized.java)
2525
Transferlearning: A multiple gpus version of the example of the same name in the dl4j-examples repo [here](./../dl4j-examples/src/main/java/org/deeplearning4j/examples/advanced/features/transferlearning/editlastlayer/presave)
2626

data-pipeline-examples/README.md

Lines changed: 25 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -1,55 +1,55 @@
11
## Eclipse Deeplearning4j: Data pipeline, DataVec Examples
22

33
This project contains a set of examples that demonstrate how raw data in various formats can be loaded, split and preprocessed to build serializable (and hence reproducible) ETL pipelines using the DataVec library.
4-
5-
[Go back](../README.md) to the main repository page to explore other features/functionality of the **Eclipse DeeplearningJ** ecosystem. File an issue [here](https://github.com/eclipse/deeplearning4j-examples/issues) to request new features.
6-
4+
5+
[Go back](../README.md) to the main repository page to explore other features/functionality of the **Eclipse Deeplearning4J** ecosystem. File an issue [here](https://github.com/eclipse/deeplearning4j-examples/issues) to request new features.
6+
77
The examples in this project and what they demonstrate are briefly described below. This is also the recommended order to explore them in.
88

99
### Loading Data
10-
InputSplit and its implementations are utility classes for defining and managing a catalog of loadable locations (paths/files), in memory, that can later be exposed through an Iterator. In simple terms, they define where your data comes from or should be saved to, when building a data pipeline with DataVec.
10+
InputSplit and its implementations are utility classes for defining and managing a catalog of loadable locations (paths/files), in memory, that can later be exposed through an Iterator. In simple terms, they define where your data comes from or should be saved to, when building a data pipeline with DataVec.
1111

12-
* [Ex01_FileSplitExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex01_FileSplitExample.java)
12+
* [Ex01_FileSplitExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex01_FileSplitExample.java)
1313
Using FileSplit which loads files in a given location. Constructor overloading allows for varying functionality like filtering files to load, loading recursively etc
14-
* [Ex02_CollectionSplitExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex02_CollectionSplitExample.java)
14+
* [Ex02_CollectionSplitExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex02_CollectionSplitExample.java)
1515
Create a split from a collection of URIs
16-
* [Ex03_NumberedFileInputSplitExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex03_NumberedFileInputSplitExample.java)
16+
* [Ex03_NumberedFileInputSplitExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex03_NumberedFileInputSplitExample.java)
1717
Create a split from numbered files, following a common pattern like file1.txt, file2.txt ... file100.txt
18-
* [Ex04_TransformSplitExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex04_TransformSplitExample.java)
18+
* [Ex04_TransformSplitExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex04_TransformSplitExample.java)
1919
Maps URIs of a given split to new URIs. Useful when features and labels are in different files sharing a common naming scheme, and the name of the output file can be determined given the name of the input file. Eg. a-in.csv and a-out.csv
20-
* [Ex05_SamplingBaseInputSplitExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex05_SamplingBaseInputSplitExample.java)
20+
* [Ex05_SamplingBaseInputSplitExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex05_SamplingBaseInputSplitExample.java)
2121
Generate several splits from the main split say for training, validation and testing.
22-
* [Ex06_KFoldIteratorFromDataSet.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex06_KFoldIteratorFromDataSet.java)
22+
* [Ex06_KFoldIteratorFromDataSet.java](./src/main/java/org/deeplearning4j/datapipelineexamples/loading/Ex06_KFoldIteratorFromDataSet.java)
2323
Generate a K-Fold iterator from a dataset
2424

2525
### Cleaning, Transforming and Analysing Data
26-
* [IrisCSVTransform.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/IrisCSVTransform.java)
26+
* [IrisCSVTransform.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/IrisCSVTransform.java)
2727
A basic example that introduces users to important concepts like Schema and TransformProcess with categoricalToInteger.
28-
* [CSVMixedDataTypesLocal.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/CSVMixedDataTypesLocal.java)
28+
* [CSVMixedDataTypesLocal.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/CSVMixedDataTypesLocal.java)
2929
Common preprocessing steps like removing unnecessary columns, filtering based on column value, replacing invalid values, parsing date time etc
30-
* [CSVMixedDataTypes.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/CSVMixedDataTypes.java)
30+
* [CSVMixedDataTypes.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/CSVMixedDataTypes.java)
3131
Same as the above but with Apache Spark
32-
* [PrintSchemasAtEachStep.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/debugging/PrintSchemasAtEachStep.java)
32+
* [PrintSchemasAtEachStep.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/debugging/PrintSchemasAtEachStep.java)
3333
How to print schema at each step which would be useful for debugging transform scripts in a complicated pipeline
34-
* [IrisAnalysis.java](./src/main/java/org/deeplearning4j/datapipelineexamples/analysis/IrisAnalysis.java)
34+
* [IrisAnalysis.java](./src/main/java/org/deeplearning4j/datapipelineexamples/analysis/IrisAnalysis.java)
3535
Basic Analysis of the dataset saved and presented as an html file
36-
* [IrisNormalizer.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/IrisNormalizer.java)
36+
* [IrisNormalizer.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/IrisNormalizer.java)
3737
Proper useage of preprocessors with min max scaler
38-
* [JoinExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/JoinExample.java)
38+
* [JoinExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/JoinExample.java)
3939
Perform joins on datasets
40-
* [PivotExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/PivotExample.java)
41-
Combine multiple independent records by key.
42-
* [WebLogDataExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/WebLogDataExample.java)
40+
* [PivotExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/PivotExample.java)
41+
Combine multiple independent records by key.
42+
* [WebLogDataExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/basic/WebLogDataExample.java)
4343
Preprocessing/aggregation operations on some web log data
44-
* [CustomReduceExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/custom/CustomReduceExample.java)
44+
* [CustomReduceExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/custom/CustomReduceExample.java)
4545
Custom Reduction example for operations on some simple CSV data that involve a custom reduction.
46-
* [MultiOpReduceExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/custom/MultiOpReduceExample.java)
46+
* [MultiOpReduceExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/transform/custom/MultiOpReduceExample.java)
4747
Reduce example with multiple ops on one column
4848

4949
### Formats
50-
* [CSVtoMapFileConversion.java](./src/main/java/org/deeplearning4j/datapipelineexamples/formats/hdfs/conversion/CSVtoMapFileConversion.java)
50+
* [CSVtoMapFileConversion.java](./src/main/java/org/deeplearning4j/datapipelineexamples/formats/hdfs/conversion/CSVtoMapFileConversion.java)
5151
A simple example on how to convert a CSV text file to a Hadoop MapFile format for better performance and the convenience of randomization supported by the MapFileRecordReader
52-
* [SVMLightExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/formats/svmlight/SVMLightExample.java)
52+
* [SVMLightExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/formats/svmlight/SVMLightExample.java)
5353
MNIST SVMLight example
54-
* [ImagePipelineExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/formats/image/ImagePipelineExample.java)
54+
* [ImagePipelineExample.java](./src/main/java/org/deeplearning4j/datapipelineexamples/formats/image/ImagePipelineExample.java)
5555
An imagepipeline that also demonstrates using transforms to augment a small dataset
Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,17 @@
11
## Eclipse Deeplearning4j: Distributed Training Examples
22

3-
This project contains a set of examples that demonstrate how to do distributed training in DL4J. DL4J distributed training employs a "hybrid" asynchronous SGD based on Niko Strom's paper linked [here](http://nikkostrom.com/publications/interspeech2015/strom_interspeech2015.pdf). More information on DL4J's distributed training methods and how they work can be found [here](https://deeplearning4j.konduit.ai/distributed-deep-learning/intro). DL4J's distributed training implementation is also fault tolerant.
3+
This project contains a set of examples that demonstrate how to do distributed training in DL4J. DL4J distributed training employs a "hybrid" asynchronous SGD based on Niko Strom's paper linked [here](http://nikkostrom.com/publications/interspeech2015/strom_interspeech2015.pdf). More information on DL4J's distributed training methods and how they work can be found [here](https://deeplearning4j.konduit.ai/distributed-deep-learning/intro). DL4J's distributed training implementation is also fault tolerant.
44

5-
Of note - Spark is only relied upon for three specific tasks: 1) Broadcasting the initial neural network parameters to all workers 2) Distributing the RDD datasets to the workers 3) Spark's fault tolerance system to detect and bring up a replacement workers. For all other communication between nodes like transferring quantized gradient updates Aeron is used.
5+
Of note - Spark is only relied upon for three specific tasks: 1) Broadcasting the initial neural network parameters to all workers 2) Distributing the RDD datasets to the workers 3) Spark's fault tolerance system to detect and bring up a replacement workers. For all other communication between nodes like transferring quantized gradient updates Aeron is used.
6+
7+
[Go back](../README.md) to the main repository page to explore other features/functionality of the **Eclipse Deeplearning4J** ecosystem. File an issue [here](https://github.com/eclipse/deeplearning4j-examples/issues) to request new features.
68

7-
[Go back](../README.md) to the main repository page to explore other features/functionality of the **Eclipse DeeplearningJ** ecosystem. File an issue [here](https://github.com/eclipse/deeplearning4j-examples/issues) to request new features.
8-
99
The examples in this project and what they demonstrate are briefly described below. This is also the recommended order to explore them in.
1010

11-
* [tinyimagenet](src/main/java/org/deeplearning4j/distributedtrainingexamples/tinyimagenet)
11+
* [tinyimagenet](src/main/java/org/deeplearning4j/distributedtrainingexamples/tinyimagenet)
1212
Train a CNN network from scratch on the Tiny ImageNet dataset. A local (single machine) version is also available.
1313

1414
* [Patent Classification](src/main/java/org/deeplearning4j/distributedtrainingexamples/patent/README.md)
1515
A real world document classification example on ~500GB of raw text. A local (single machine) version is also provided to demonstrate the reduction in training time to converge to the same level of the accuracy. Experiments have demonstrated a near linear scaling with the number of workers in the cluster!
1616

17-
NOTE: For parallel inference take a look at the
17+
NOTE: For parallel inference take a look at the

0 commit comments

Comments
 (0)