You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+3-1Lines changed: 3 additions & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -12,7 +12,9 @@
12
12
13
13
# About ABACUS
14
14
15
-
ABACUS (Atomic-orbital Based Ab-initio Computation at UStc) is an open-source package based on density functional theory (DFT). The package utilizes both plane wave and numerical atomic basis sets with the usage of norm-conserving pseudopotentials to describe the interactions between nuclear ions and valence electrons. ABACUS supports LDA, GGA, meta-GGA, and hybrid functionals. Apart from single-point calculations, the package allows geometry optimizations and ab-initio molecular dynamics with various ensembles. The package also provides a variety of advanced functionalities for simulating materials, including the DFT+U, VdW corrections, and implicit solvation model, etc. In addition, ABACUS strives to provide a general infrastructure to facilitate the developments and applications of novel machine-learning-assisted DFT methods (DeePKS, DP-GEN, DeepH, etc.) in molecular and material simulations.
15
+
ABACUS (Atomic-orbital Based Ab-initio Computation at UStc) is an open-source package based on density functional theory (DFT). The package utilizes both plane wave and numerical atomic basis sets with the usage of norm-conserving pseudopotentials to describe the interactions between nuclear ions and valence electrons. ABACUS supports LDA, GGA, meta-GGA, and hybrid functionals. Apart from single-point calculations, the package allows geometry optimizations and ab-initio molecular dynamics with various ensembles. The package also provides a variety of advanced functionalities for simulating materials, including the DFT+U, VdW corrections, and implicit solvation model, etc. In addition, ABACUS strives to provide a general infrastructure to facilitate the developments and applications of novel machine-learning-assisted DFT methods (DeePKS, DP-GEN, DeepH, DeePTB etc.) in molecular and material simulations.
16
16
17
17
# Online Documentation
18
18
For detailed documentation, please refer to [our documentation website](https://abacus.deepmodeling.com/).
19
+
20
+
See our [Github Pages](https://mcresearch.github.io/abacus-user-guide/) for more tutorials and developer guides.
0 commit comments