You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: source/_posts/ABACUS_16_04_2025.md
+8-5Lines changed: 8 additions & 5 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -23,7 +23,7 @@ Magnetic anisotropy plays a crucial role in maintaining the long-range magnetic
23
23
24
24
*Figure 1 : (a) Top and side views of monolayer MnSe₂; (b - c) Side and oblique views of AA-stacked bilayer MnSe₂; (d) Definition of polar angle θ and azimuthal angle φ in the spherical coordinate system; (e - f) Energies of magnetic moments of monolayer (e) and bilayer (f) MnSe₂ along different directions.*
25
25
26
-
The calculation results of the interlayer differential charge density (Figure 2a) indicate that MnSe₂ has a strong interlayer coupling. The researchers further decomposed the contribution of the magnetic anisotropy energy (MAE) to atoms (Figure 2b) and orbitals (Figure 2c - d), and found that the interaction between the $`p_y`$ and $`p_z`$ orbitals of interface Se atoms plays a key role in the transformation of the easy magnetization axis.
26
+
The calculation results of the interlayer differential charge density (Figure 2a) indicate that MnSe₂ has a strong interlayer coupling. The researchers further decomposed the contribution of the magnetic anisotropy energy (MAE) to atoms (Figure 2b) and orbitals (Figure 2c - d), and found that the interaction between the p<sub>y</sub> and p<sub>z</sub> orbitals of interface Se atoms plays a key role in the transformation of the easy magnetization axis.
where o and u represent the occupied and unoccupied states, respectively. Since the energy difference $`E_{o}-E_{u}`$ between the occupied and unoccupied states appears in the denominator, the states closer to the Fermi level have a greater impact on MAE, while the states far from the Fermi level contribute relatively less.
40
+
where o and u represent the occupied and unoccupied states, respectively. Since the energy difference E<sub>o</sub> - E<sub>u</sub> between the occupied and unoccupied states appears in the denominator, the states closer to the Fermi level have a greater impact on MAE, while the states far from the Fermi level contribute relatively less.
38
41
39
-
Combined with the electronic structure analysis, the researchers found that in monolayer MnSe₂, the p_z orbital of Se atoms is far from the Fermi level (Figure 3a, 3c), so the coupling between $`p_z`$ and $`p_y`$ is weak; in the bilayer structure, the interlayer coupling causes the $`p_z`$ orbitals of interface Se atoms to hybridize, forming bonding and antibonding states (Figure 3d). The antibonding states split and approach the Fermi level, thus enhancing the coupling between the $`p_y`$ and $`p_z`$ orbitals and making the easy magnetization axis of bilayer MnSe₂ out-of-plane.
42
+
Combined with the electronic structure analysis, the researchers found that in monolayer MnSe₂, the p_z orbital of Se atoms is far from the Fermi level (Figure 3a, 3c), so the coupling between p<sub>z</sub> and p<sub>y</sub> is weak; in the bilayer structure, the interlayer coupling causes the p<sub>z</sub> orbitals of interface Se atoms to hybridize, forming bonding and antibonding states (Figure 3d). The antibonding states split and approach the Fermi level, thus enhancing the coupling between the p<sub>y</sub> and p<sub>z</sub> orbitals and making the easy magnetization axis of bilayer MnSe₂ out-of-plane.
40
43
41
44
In addition, MnSe₂ also exhibits topological properties that change with the number of layers, including the evolution of the Chern number and surface states (Figure 3e - f). The layer evolution of the above electronic structure and topological properties was calculated and verified using the domestic first-principles software ABACUS.
*Figure 3 here: (a - b) Spin-down band structures of monolayer and bilayer MnSe₂; (c) Projected density of states of $`p_y`$ and $`p_z`$ orbitals of (interface) Se at the Gamma point in monolayer and bilayer; (d) Charge densities of the marked states in (a - c); (e - f) Surface states of monolayer and bilayer MnSe₂.*
50
+
*Figure 3 here: (a - b) Spin-down band structures of monolayer and bilayer MnSe₂; (c) Projected density of states of p<sub>y</sub> and p<sub>z</sub> orbitals of (interface) Se at the Gamma point in monolayer and bilayer; (d) Charge densities of the marked states in (a - c); (e - f) Surface states of monolayer and bilayer MnSe₂.*
48
51
49
52
Some external regulation methods can also affect the occupation state of the p orbitals of Se atoms, and thus are expected to achieve the regulation of the direction of the easy magnetization axis of the material. Based on this, the researchers systematically studied a variety of external regulation methods. The results show that by changing the interlayer stacking mode (Figure 4a - b), applying charge doping (Figure 4c), introducing biaxial strain (Figure 4d), and replacing non-metal atoms, the direction of the easy magnetization axis of MnSe₂ can be effectively regulated, providing new ideas for realizing the controllable regulation of magnetic anisotropy in 2D magnets.
*Figure 4 here: (a) Top and side views of AB-stacked bilayer MnSe₂; (b) Atom-decomposed MAE of AA and AB stackings; (c - d) Contributions of different atoms to MAE in monolayer MnSe₂ and the changes of $`E_{X}-E_{ea}`$ with doping concentration and in-plane biaxial strain.*
58
+
*Figure 4 here: (a) Top and side views of AB-stacked bilayer MnSe₂; (b) Atom-decomposed MAE of AA and AB stackings; (c - d) Contributions of different atoms to MAE in monolayer MnSe₂ and the changes of E<sub>X</sub> - E<sub>ea</sub> with doping concentration and in-plane biaxial strain.*
0 commit comments