|
1 | 1 | from deepmd.env import tf |
2 | 2 | import re |
3 | 3 | import numpy as np |
| 4 | + |
| 5 | +def convertNumber(number): |
| 6 | + binary = bin(number).replace("0b", "").zfill(16) |
| 7 | + sign = int(binary[0]) * (-2) + 1 |
| 8 | + exp = int(binary[1:6], 2) |
| 9 | + frac = (int(binary[6:], 2) + 2 ** 10) * (2 ** -10) |
| 10 | + return sign * (2 ** (exp - 15)) * frac |
| 11 | + |
| 12 | + |
| 13 | +def convertMatrix(matrix, shape): |
| 14 | + matrix = matrix.flatten() |
| 15 | + tmp = np.array([convertNumber(matrix[i]) for i in range(len(matrix))]) |
| 16 | + return tmp.reshape(shape) |
| 17 | + |
| 18 | + |
4 | 19 | def transform(args): |
5 | 20 | raw_graph = load_graph(args.raw_model) |
6 | 21 | old_graph = load_graph(args.old_model) |
@@ -34,31 +49,66 @@ def transform_graph(raw_graph,old_graph): |
34 | 49 |
|
35 | 50 | for node in raw_graph_def.node: |
36 | 51 | if node.name in raw_graph_node.keys(): |
| 52 | + """ |
37 | 53 | if precision_dict[old_graph_node[node.name].dtype][1] == "float16" or precision_dict[raw_graph_node[node.name].dtype][1] == "float16": |
38 | 54 | raise RuntimeError("float16 conversions not currently supported") |
| 55 | + """ |
39 | 56 |
|
40 | 57 | check_dim(raw_graph_node, old_graph_node, node.name) |
| 58 | + old_graph_dtype = precision_dict[old_graph_node[node.name].dtype] |
| 59 | + raw_graph_dtype = precision_dict[raw_graph_node[node.name].dtype] |
| 60 | + print("%s is passed from old graph(%s) to raw graph(%s)" % (node.name, old_graph_dtype[1],raw_graph_dtype[1])) |
| 61 | + |
| 62 | + if raw_graph_dtype[1] == "float16": |
| 63 | + if old_graph_dtype[1] == "float64" or old_graph_dtype[1] == "float32": |
| 64 | + if re.fullmatch("final_layer_type_\d+/bias", node.name) == None: |
| 65 | + tensor_value = np.frombuffer(old_graph_node[node.name].tensor_content, dtype=old_graph_dtype[0]) |
| 66 | + tensor_value = tensor_value.astype(np.float16) |
| 67 | + tensor_shape = [dim.size for dim in raw_graph_node[node.name].tensor_shape.dim] |
| 68 | + node.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto(tensor_value, tf.float16, tensor_shape))) |
41 | 69 |
|
42 | | - if re.fullmatch("final_layer_type_\d+/bias",node.name) == None: |
43 | | - tensor_value = np.frombuffer(old_graph_node[node.name].tensor_content,dtype = precision_dict[old_graph_node[node.name].dtype][0]) |
44 | | - tensor_value = tensor_value.astype(dtype=precision_dict[raw_graph_node[node.name].dtype][0]) |
45 | | - node.attr["value"].tensor.tensor_content = tensor_value.tostring() |
| 70 | + else: |
| 71 | + if old_graph_dtype[1] == "float64": |
| 72 | + tensor_value = (np.array(old_graph_node[node.name].double_val)).astype(np.float16) |
| 73 | + node.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto(tensor_value,tf.float16, [1]))) |
46 | 74 |
|
47 | | - else: |
48 | | - if precision_dict[old_graph_node[node.name].dtype][1] == "float64": |
49 | | - tensor_value = (np.array(old_graph_node[node.name].double_val)).astype(precision_dict[raw_graph_node[node.name].dtype][0]) |
50 | | - node.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto(tensor_value,precision_dict[raw_graph_node[node.name].dtype][0], [1]))) |
51 | | - |
52 | | - elif precision_dict[old_graph_node[node.name].dtype][1] == "float32": |
53 | | - tensor_value = (np.array(old_graph_node[node.name].float_val)).astype(precision_dict[raw_graph_node[node.name].dtype][0]) |
54 | | - node.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto(tensor_value, precision_dict[raw_graph_node[node.name].dtype][0], [1]))) |
55 | | - |
56 | | - elif precision_dict[old_graph_node[node.name].dtype][1] == "float16": |
57 | | - tensor_value = (np.array(old_graph_node[node.name].half_val)).astype(precision_dict[raw_graph_node[node.name].dtype][0]) |
58 | | - node.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto(tensor_value, precision_dict[raw_graph_node[node.name].dtype][0], [1]))) |
| 75 | + elif old_graph_dtype[1] == "float32": |
| 76 | + tensor_value = (np.array(old_graph_node[node.name].float_val)).astype(np.float16) |
| 77 | + node.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto(tensor_value,tf.float16, [1]))) |
| 78 | + |
| 79 | + elif old_graph_dtype[1] == "float16": |
| 80 | + tensor_shape = [dim.size for dim in raw_graph_node[node.name].tensor_shape.dim] |
| 81 | + tensor_value = convertMatrix(np.array(old_graph_node[node.name].half_val), tensor_shape) |
| 82 | + node.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto(tensor_value, tf.float16, tensor_value.shape))) |
59 | 83 |
|
60 | | - print("%s is passed from old graph(%s) to raw graph(%s)" % (node.name,precision_dict[old_graph_node[node.name].dtype][1],precision_dict[raw_graph_node[node.name].dtype][1])) |
61 | | - |
| 84 | + elif raw_graph_dtype[1] == "float64" or raw_graph_dtype[1] == "float32": |
| 85 | + if old_graph_dtype[1] == "float64" or old_graph_dtype[1] == "float32": |
| 86 | + if re.fullmatch("final_layer_type_\d+/bias", node.name) == None: |
| 87 | + tensor_value = np.frombuffer(old_graph_node[node.name].tensor_content,dtype = old_graph_dtype[0]) |
| 88 | + tensor_value = tensor_value.astype(dtype=raw_graph_dtype[0]) |
| 89 | + node.attr["value"].tensor.tensor_content = tensor_value.tostring() |
| 90 | + |
| 91 | + else: |
| 92 | + if old_graph_dtype[1] == "float64": |
| 93 | + tensor_value = (np.array(old_graph_node[node.name].double_val)).astype(raw_graph_dtype[0]) |
| 94 | + node.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto(tensor_value,raw_graph_dtype[0], [1]))) |
| 95 | + |
| 96 | + elif old_graph_dtype[1] == "float32": |
| 97 | + tensor_value = (np.array(old_graph_node[node.name].float_val)).astype(raw_graph_dtype[0]) |
| 98 | + node.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto(tensor_value,raw_graph_dtype[0], [1]))) |
| 99 | + |
| 100 | + elif old_graph_dtype[1] == "float16": |
| 101 | + if re.fullmatch("final_layer_type_\d+/bias", node.name) == None: |
| 102 | + tensor_shape = [dim.size for dim in raw_graph_node[node.name].tensor_shape.dim] |
| 103 | + tensor_value = convertMatrix(np.array(old_graph_node[node.name].half_val), tensor_shape) |
| 104 | + tensor_value = tensor_value.astype(raw_graph_dtype[0]) |
| 105 | + node.attr["value"].tensor.tensor_content = tensor_value.tostring() |
| 106 | + else: |
| 107 | + tensor_shape = [dim.size for dim in raw_graph_node[node.name].tensor_shape.dim] |
| 108 | + tensor_value = convertMatrix(np.array(old_graph_node[node.name].half_val), tensor_shape) |
| 109 | + tensor_value = tensor_value.astype(raw_graph_dtype[0]) |
| 110 | + node.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto(tensor_value,raw_graph_dtype[0], tensor_value.shape))) |
| 111 | + |
62 | 112 | return raw_graph_def |
63 | 113 |
|
64 | 114 | def check_dim(raw_graph_node, old_graph_node, node_name): |
|
0 commit comments