Skip to content

Commit edb1ce9

Browse files
authored
Create transform.py
1 parent 6ed1414 commit edb1ce9

File tree

1 file changed

+59
-0
lines changed

1 file changed

+59
-0
lines changed

source/train/transform.py

Lines changed: 59 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,59 @@
1+
from deepmd.env import tf
2+
def transform(args):
3+
new_graph = load_graph(args.raw_model)
4+
old_graph = load_graph(args.old_model)
5+
print("%d ops in the raw graph\n%d ops in the old graph" %(len(new_graph.node),len(old_graph.node)))
6+
transform_node = load_data(new_graph,old_graph)
7+
for node in new_graph.node:
8+
if node.name in transform_node:
9+
print("%s is passed from old graph to raw graph" % node.name)
10+
node.attr["value"].tensor.CopyFrom(transform_node[node.name].attr["value"].tensor)
11+
with tf.gfile.GFile(args.output, mode='wb') as f:
12+
f.write(new_graph.SerializeToString())
13+
print("the output model is saved in %s" % args.output)
14+
15+
def load_graph(graphName):
16+
graph_def = tf.GraphDef()
17+
with open(graphName,"rb") as f:
18+
graph_def.ParseFromString(f.read())
19+
with tf.Graph().as_default() as graph:
20+
tf.import_graph_def(graph_def,name = "")
21+
return graph_def
22+
23+
def load_data(new_graph,old_graph):
24+
new_graph_node = load_transform_node(new_graph)
25+
old_graph_node = load_transform_node(old_graph)
26+
if len(new_graph_node) != len(old_graph_node):
27+
raise RuntimeError("New graph and original graph has different network structure\n")
28+
for nodeName in old_graph_node.keys():
29+
check_dim(new_graph_node, old_graph_node, nodeName)
30+
check_precision(new_graph_node, old_graph_node, nodeName)
31+
return old_graph_node
32+
33+
34+
def check_precision(new_graph_node, old_graph_node, nodeName):
35+
new_graph_precision = new_graph_node[nodeName].attr["value"].tensor.dtype
36+
old_graph_precision = old_graph_node[nodeName].attr["value"].tensor.dtype
37+
if new_graph_precision != old_graph_precision:
38+
raise RuntimeError("New graph and original graph has different"+nodeName+" precision\n")
39+
40+
def check_dim(new_graph_node, old_graph_node, nodeName):
41+
new_graph_dim = new_graph_node[nodeName].attr["value"].tensor.tensor_shape
42+
old_graph_dim = old_graph_node[nodeName].attr["value"].tensor.tensor_shape
43+
if new_graph_dim != old_graph_dim:
44+
raise RuntimeError("New graph and original graph has different"+nodeName+" dim\n")
45+
46+
47+
def load_transform_node(graph):
48+
transform_node = {}
49+
filter_w = ["filter_type_0/matrix_{}_0".format(i) for i in range(1,10)]
50+
filter_b = ["filter_type_0/bias_{}_0".format(i) for i in range(1,10)]
51+
fitting_w = ["layer_{}_type_0/matrix".format(i) for i in range(0,10)]
52+
fitting_b = ["layer_{}_type_0/bias".format(i) for i in range(0,10)]
53+
fitting_idt = ["layer_{}_type_0/idt".format(i) for i in range(0,10)]
54+
final_layer = ["final_layer_type_0/bias","final_layer_type_0/matrix"]
55+
transform_node_list = filter_w + filter_b + fitting_w + fitting_b + fitting_idt + final_layer
56+
for node in graph.node:
57+
if node.name in transform_node_list:
58+
transform_node[node.name] = node
59+
return transform_node

0 commit comments

Comments
 (0)