@@ -171,10 +171,7 @@ def get_dataloader_and_buffer(_data, _params):
171
171
) # None sampler will lead to a premature stop iteration. Replacement should be True in attribute of the sampler to produce expected number of items in one iteration.
172
172
_dataloader = DataLoader (
173
173
_data ,
174
- batch_sampler = paddle .io .BatchSampler (
175
- sampler = _sampler ,
176
- drop_last = False ,
177
- ),
174
+ batch_size = 1 ,
178
175
num_workers = NUM_WORKERS
179
176
if dist .is_available ()
180
177
else 0 , # setting to 0 diverges the behavior of its iterator; should be >=1
@@ -325,17 +322,18 @@ def get_lr(lr_params):
325
322
self .validation_data ,
326
323
self .valid_numb_batch ,
327
324
) = get_data_loader (training_data , validation_data , training_params )
328
- training_data .print_summary (
329
- "training" ,
330
- to_numpy_array (self .training_dataloader .batch_sampler .sampler .weights ),
331
- )
332
- if validation_data is not None :
333
- validation_data .print_summary (
334
- "validation" ,
335
- to_numpy_array (
336
- self .validation_dataloader .batch_sampler .sampler .weights
337
- ),
338
- )
325
+ # no sampler, do not need print!
326
+ # training_data.print_summary(
327
+ # "training",
328
+ # to_numpy_array(self.training_dataloader.batch_sampler.sampler.weights),
329
+ # )
330
+ # if validation_data is not None:
331
+ # validation_data.print_summary(
332
+ # "validation",
333
+ # to_numpy_array(
334
+ # self.validation_dataloader.batch_sampler.sampler.weights
335
+ # ),
336
+ # )
339
337
else :
340
338
(
341
339
self .training_dataloader ,
@@ -370,27 +368,27 @@ def get_lr(lr_params):
370
368
validation_data [model_key ],
371
369
training_params ["data_dict" ][model_key ],
372
370
)
373
-
374
- training_data [model_key ].print_summary (
375
- f"training in { model_key } " ,
376
- to_numpy_array (
377
- self .training_dataloader [
378
- model_key
379
- ].batch_sampler .sampler .weights
380
- ),
381
- )
382
- if (
383
- validation_data is not None
384
- and validation_data [model_key ] is not None
385
- ):
386
- validation_data [model_key ].print_summary (
387
- f"validation in { model_key } " ,
388
- to_numpy_array (
389
- self .validation_dataloader [
390
- model_key
391
- ].batch_sampler .sampler .weights
392
- ),
393
- )
371
+ # no sampler, do not need print!
372
+ # training_data[model_key].print_summary(
373
+ # f"training in {model_key}",
374
+ # to_numpy_array(
375
+ # self.training_dataloader[
376
+ # model_key
377
+ # ].batch_sampler.sampler.weights
378
+ # ),
379
+ # )
380
+ # if (
381
+ # validation_data is not None
382
+ # and validation_data[model_key] is not None
383
+ # ):
384
+ # validation_data[model_key].print_summary(
385
+ # f"validation in {model_key}",
386
+ # to_numpy_array(
387
+ # self.validation_dataloader[
388
+ # model_key
389
+ # ].batch_sampler.sampler.weights
390
+ # ),
391
+ # )
394
392
395
393
# Learning rate
396
394
self .warmup_steps = training_params .get ("warmup_steps" , 0 )
@@ -856,7 +854,9 @@ def log_loss_valid(_task_key="Default"):
856
854
857
855
if not self .multi_task :
858
856
train_results = log_loss_train (loss , more_loss )
859
- valid_results = log_loss_valid ()
857
+ # valid_results = log_loss_valid()
858
+ # no run valid!
859
+ valid_results = None
860
860
if self .rank == 0 :
861
861
log .info (
862
862
format_training_message_per_task (
0 commit comments