Replies: 2 comments 2 replies
-
I have met similar problem. I have train a force field with datasets from AIMD at 1000 K, 2000 K, 4000 K, 6000 K and 8000 K. RMSE is ok when 6000 K and 8000 K datasets were excluded. |
Beta Was this translation helpful? Give feedback.
1 reply
-
Forces are usually larger under high pressure and temperature, so it may be expected to get a higher absolute error. You can consider checking relative errors. |
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
I want to train carbon potential under high pressure and temperature, 4 AIMD runs (NPT: 0GP-300K,250GPa-2000K,500GPa-4000K,800GPa-8000K) are conducted to obtain the initial data for training. However, the RMS force error evaluated by training set can not converge during training (oscillate around 0.5 eV/A). When I use only 0GPa-300K data, the force eeror quickly converges to ~5e-2 eV/A. So is it reasonable? and how can i use all these data to train potential to get a convergent result.
following is the input.json file
{
"model": {
"_comment": " model parameters",
"type_map": [
"C"
],
"descriptor": {
"type": "se_ar",
"a": {
"sel": [
200
],
"rcut_smth": 4.5,
"rcut": 6.0,
"neuron": [
60,
120,
240
],
"resnet_dt": false,
"axis_neuron": 16,
"seed": 1,
"_comment": " that's all"
},
"r": {
"sel": [
200
],
"rcut_smth": 4.5,
"rcut": 6.0,
"neuron": [
25,
50,
100
],
"resnet_dt": false,
"seed": 1,
"_comment": " that's all"
},
"seed": 1367870059
},
"fitting_net": {
"neuron": [
240,
240,
240
],
"resnet_dt": true,
"seed": 2753404222
}
},
"learning_rate": {
"type": "exp",
"start_lr": 0.001,
"decay_rate": 0.95,
"decay_steps": 2000,
"_comment": "that's all"
},
"loss": {
"start_pref_e": 0.02,
"limit_pref_e": 1,
"start_pref_f": 1000,
"limit_pref_f": 1,
"start_pref_v": 0.0,
"limit_pref_v": 0.0
},
"training": {
"set_prefix": "set",
"stop_batch": 200000,
"batch_size": [
1,
1,
1,
1
],
"disp_file": "lcurve.out",
"disp_freq": 1000,
"numb_test": 4,
"save_freq": 1000,
"save_ckpt": "model.ckpt",
"load_ckpt": "model.ckpt",
"disp_training": true,
"time_training": true,
"profiling": false,
"profiling_file": "timeline.json",
"_comment": "that's all",
"systems": [
"../data.init/001",
"../data.init/002",
"../data.init/003",
"../data.init/004"
],
"seed": 1354050906
}
}
following is the lcurve.out file
batch l2_tst l2_trn l2_e_tst l2_e_trn l2_f_tst l2_f_trn lr
1000 8.91e+01 9.10e+01 2.93e+00 2.97e+00 2.81e+00 2.87e+00 1.0e-03
2000 1.79e+01 1.89e+01 3.05e+00 3.05e+00 2.71e-01 3.38e-01 8.9e-04
3000 2.76e+01 2.75e+01 7.80e-01 7.68e-01 9.15e-01 9.12e-01 8.9e-04
4000 4.53e+01 4.64e+01 2.84e+00 2.89e+00 1.45e+00 1.49e+00 7.9e-04
5000 2.16e+01 2.25e+01 8.41e-01 1.16e+00 7.38e-01 7.47e-01 7.9e-04
6000 7.10e+01 7.03e+01 1.28e+00 1.34e+00 2.64e+00 2.61e+00 7.1e-04
7000 2.26e+01 1.92e+01 3.04e-01 3.11e-01 8.46e-01 7.15e-01 7.1e-04
8000 6.11e+01 6.36e+01 1.18e-01 7.09e-02 2.43e+00 2.53e+00 6.3e-04
9000 1.18e+01 1.17e+01 2.56e-02 1.29e-02 4.68e-01 4.67e-01 6.3e-04
10000 2.42e+01 2.64e+01 2.74e-01 2.17e-01 1.01e+00 1.11e+00 5.6e-04
11000 5.78e+00 5.74e+00 3.90e-02 3.42e-02 2.43e-01 2.41e-01 5.6e-04
12000 4.99e+01 4.85e+01 3.34e-01 3.20e-01 2.22e+00 2.16e+00 5.0e-04
13000 4.69e+00 4.48e+00 2.13e-01 2.06e-01 1.84e-01 1.75e-01 5.0e-04
14000 1.46e+01 1.41e+01 1.38e-01 3.30e-02 6.86e-01 6.66e-01 4.5e-04
15000 8.59e+00 8.66e+00 9.01e-02 9.65e-02 4.03e-01 4.06e-01 4.5e-04
16000 3.97e+00 3.93e+00 6.84e-02 6.80e-02 1.95e-01 1.93e-01 4.0e-04
17000 6.14e+01 5.95e+01 1.37e+00 1.31e+00 2.97e+00 2.89e+00 4.0e-04
18000 1.59e+01 1.62e+01 6.08e-01 6.00e-01 7.49e-01 7.74e-01 3.5e-04
19000 8.02e+00 7.93e+00 5.85e-02 5.34e-02 4.24e-01 4.19e-01 3.5e-04
20000 1.43e+01 1.31e+01 1.01e-01 1.04e-01 7.98e-01 7.30e-01 3.2e-04
21000 1.20e+01 1.16e+01 2.48e-02 1.21e-02 6.75e-01 6.51e-01 3.2e-04
22000 3.35e+01 3.25e+01 5.85e-02 6.82e-02 1.99e+00 1.93e+00 2.8e-04
23000 1.50e+01 1.79e+01 3.09e-02 2.43e-03 8.90e-01 1.07e+00 2.8e-04
24000 3.18e+01 3.30e+01 4.12e-02 2.38e-02 2.00e+00 2.08e+00 2.5e-04
25000 3.16e+01 3.20e+01 1.66e-01 1.42e-01 1.98e+00 2.02e+00 2.5e-04
26000 5.76e+00 7.02e+00 6.81e-02 1.15e-02 3.80e-01 4.68e-01 2.2e-04
27000 2.91e+01 3.12e+01 3.61e-02 4.41e-02 1.94e+00 2.08e+00 2.2e-04
28000 2.75e+01 2.63e+01 5.51e-02 3.32e-02 1.94e+00 1.86e+00 2.0e-04
29000 9.73e+00 9.08e+00 2.31e-02 1.45e-02 6.87e-01 6.41e-01 2.0e-04
30000 1.17e+01 1.18e+01 5.24e-01 5.31e-01 7.01e-01 7.04e-01 1.8e-04
31000 1.09e+01 1.38e+01 3.91e-01 3.34e-01 7.15e-01 9.77e-01 1.8e-04
32000 4.72e+00 4.75e+00 3.42e-02 3.29e-02 3.72e-01 3.75e-01 1.6e-04
33000 9.15e+00 9.20e+00 3.16e-01 3.16e-01 6.41e-01 6.45e-01 1.6e-04
34000 2.27e+01 2.26e+01 2.94e-02 7.11e-03 1.91e+00 1.90e+00 1.4e-04
35000 9.49e+00 9.49e+00 3.63e-01 3.29e-01 6.79e-01 7.02e-01 1.4e-04
36000 2.12e+01 2.25e+01 2.25e-02 5.74e-02 1.88e+00 2.00e+00 1.3e-04
37000 7.43e+00 1.51e+01 1.40e-01 2.48e-01 6.37e-01 1.31e+00 1.3e-04
38000 6.66e+00 6.59e+00 1.59e-02 2.07e-02 6.26e-01 6.19e-01 1.1e-04
39000 1.99e+01 1.96e+01 3.05e-02 3.51e-04 1.87e+00 1.85e+00 1.1e-04
40000 2.06e+00 1.93e+00 5.14e-02 4.90e-02 1.92e-01 1.80e-01 1.0e-04
41000 1.87e+01 1.91e+01 7.62e-02 3.73e-02 1.86e+00 1.90e+00 1.0e-04
42000 1.09e+01 1.01e+01 6.50e-01 6.09e-01 6.20e-01 5.75e-01 8.9e-05
43000 6.15e+00 5.58e+00 1.22e-01 1.18e-01 6.23e-01 5.62e-01 8.9e-05
44000 3.40e+00 3.53e+00 5.62e-02 5.55e-02 3.69e-01 3.84e-01 7.9e-05
45000 5.79e+00 5.32e+00 4.48e-02 5.03e-04 6.42e-01 5.93e-01 7.9e-05
46000 3.15e+00 3.39e+00 2.67e-02 3.19e-02 3.69e-01 3.96e-01 7.1e-05
47000 3.19e+00 3.75e+00 5.96e-02 5.95e-02 3.63e-01 4.31e-01 7.1e-05
48000 1.47e+01 1.53e+01 2.31e-02 1.73e-02 1.84e+00 1.91e+00 6.3e-05
49000 2.94e+00 3.10e+00 2.20e-02 1.98e-02 3.65e-01 3.85e-01 6.3e-05
50000 1.38e+01 1.36e+01 3.66e-02 6.31e-02 1.82e+00 1.79e+00 5.6e-05
51000 2.17e+00 2.16e+00 1.28e-01 1.29e-01 1.53e-01 1.47e-01 5.6e-05
52000 1.30e+01 1.36e+01 2.46e-02 4.14e-02 1.81e+00 1.90e+00 5.0e-05
53000 2.84e+00 2.81e+00 1.76e-01 1.74e-01 1.82e-01 1.80e-01 5.0e-05
54000 4.16e+00 5.81e+00 6.87e-02 6.98e-02 5.99e-01 8.48e-01 4.5e-05
55000 2.38e+00 2.30e+00 7.13e-03 4.98e-03 3.51e-01 3.41e-01 4.5e-05
56000 1.36e+00 1.36e+00 7.00e-02 7.01e-02 1.44e-01 1.43e-01 4.0e-05
57000 1.75e+00 1.75e+00 1.03e-01 1.03e-01 1.45e-01 1.46e-01 4.0e-05
58000 3.90e+00 3.76e+00 1.09e-01 1.15e-01 5.91e-01 5.58e-01 3.5e-05
59000 1.14e+00 1.38e+00 5.11e-02 4.73e-02 1.44e-01 1.98e-01 3.5e-05
60000 2.18e+00 2.23e+00 4.39e-02 4.18e-02 3.66e-01 3.75e-01 3.2e-05
61000 3.43e+00 3.52e+00 3.89e-02 3.90e-02 5.93e-01 6.08e-01 3.2e-05
62000 9.74e+00 9.24e+00 3.96e-02 8.37e-02 1.80e+00 1.70e+00 2.8e-05
63000 9.75e+00 9.37e+00 2.94e-02 1.51e-02 1.80e+00 1.73e+00 2.8e-05
64000 2.15e+00 2.11e+00 7.73e-02 6.95e-02 3.60e-01 3.64e-01 2.5e-05
65000 1.81e+00 1.85e+00 1.03e-02 6.14e-03 3.53e-01 3.61e-01 2.5e-05
66000 1.06e+00 1.09e+00 5.71e-02 5.72e-02 1.35e-01 1.45e-01 2.2e-05
67000 2.35e+00 2.31e+00 1.11e-01 1.07e-01 3.54e-01 3.55e-01 2.2e-05
68000 6.41e-01 6.58e-01 9.69e-03 5.33e-03 1.37e-01 1.43e-01 2.0e-05
69000 2.90e+00 2.78e+00 7.65e-02 7.28e-02 5.85e-01 5.62e-01 2.0e-05
70000 7.86e+00 7.88e+00 7.07e-02 7.97e-02 1.80e+00 1.80e+00 1.8e-05
71000 6.33e-01 6.62e-01 1.51e-02 1.77e-02 1.37e-01 1.41e-01 1.8e-05
72000 1.52e+00 1.46e+00 3.33e-02 3.22e-02 3.52e-01 3.37e-01 1.6e-05
73000 2.39e+00 2.37e+00 1.46e-02 1.57e-02 5.79e-01 5.74e-01 1.6e-05
74000 2.39e+00 2.20e+00 5.11e-02 4.98e-02 5.83e-01 5.35e-01 1.4e-05
75000 2.27e+00 2.20e+00 1.48e-02 5.55e-03 5.82e-01 5.66e-01 1.4e-05
76000 1.32e+00 1.29e+00 2.16e-02 1.88e-02 3.48e-01 3.42e-01 1.3e-05
77000 2.16e+00 1.84e+00 2.21e-02 2.53e-03 5.80e-01 5.00e-01 1.3e-05
78000 6.30e+00 6.02e+00 3.20e-02 2.72e-02 1.80e+00 1.72e+00 1.1e-05
79000 6.29e+00 6.31e+00 2.41e-02 3.42e-02 1.80e+00 1.80e+00 1.1e-05
80000 4.41e-01 4.22e-01 3.95e-03 3.31e-03 1.32e-01 1.26e-01 1.0e-05
Beta Was this translation helpful? Give feedback.
All reactions