Temperature error when run NPT
ensemble MD use lammps
with deep-kit
MLP file
#2378
-
Version
When using the MLP file learned by
# step rmse_val rmse_trn rmse_e_val rmse_e_trn rmse_f_val rmse_f_trn lr
.... .... .... .... .... .... .... ....
1096100 7.91e-03 9.88e-03 2.20e-04 2.53e-04 7.69e-03 9.64e-03 3.7e-08
1096200 5.22e-03 1.54e-02 1.58e-04 6.12e-04 5.07e-03 1.49e-02 3.7e-08
1096300 7.99e-03 1.00e-02 2.28e-04 4.31e-04 7.76e-03 9.65e-03 3.7e-08
1096400 5.85e-03 5.04e-03 1.87e-04 4.13e-04 5.61e-03 4.61e-03 3.7e-08
1096500 5.60e-03 9.73e-03 2.26e-04 1.79e-04 5.36e-03 9.52e-03 3.7e-08
1096600 7.50e-03 4.25e-03 2.04e-04 1.31e-04 7.28e-03 4.14e-03 3.7e-08
1096700 6.33e-03 4.01e-03 2.10e-04 3.14e-04 6.09e-03 3.69e-03 3.7e-08
1096800 5.30e-03 9.99e-03 2.19e-04 5.49e-05 5.07e-03 9.81e-03 3.7e-08
1096900 5.56e-03 2.87e-03 1.71e-04 1.79e-04 5.39e-03 2.71e-03 3.7e-08
1097000 5.05e-03 4.59e-03 2.45e-04 1.64e-04 4.81e-03 4.45e-03 3.7e-08
1097100 7.17e-03 7.08e-03 2.56e-04 1.62e-04 6.82e-03 6.92e-03 3.7e-08
1097200 5.96e-03 1.57e-02 1.70e-04 7.13e-04 5.78e-03 1.51e-02 3.7e-08
1097300 7.61e-03 4.21e-03 2.58e-04 1.19e-04 7.30e-03 4.10e-03 3.7e-08
1097400 5.69e-03 8.07e-03 2.34e-04 1.01e-04 5.38e-03 7.92e-03 3.7e-08
1097500 6.18e-03 5.88e-03 1.92e-04 4.04e-04 5.98e-03 5.49e-03 3.7e-08
1097600 6.48e-03 3.43e-03 1.99e-04 1.88e-05 6.26e-03 3.36e-03 3.7e-08
1097700 5.87e-03 4.77e-03 1.69e-04 1.33e-04 5.68e-03 4.64e-03 3.7e-08
1097800 6.55e-03 1.22e-02 1.78e-04 3.88e-04 6.35e-03 1.18e-02 3.7e-08
1097900 7.01e-03 4.63e-03 1.83e-04 5.07e-04 6.79e-03 3.97e-03 3.7e-08
1098000 6.15e-03 5.10e-03 3.11e-04 4.85e-04 5.83e-03 4.53e-03 3.7e-08
1098100 5.72e-03 5.55e-03 1.72e-04 3.11e-04 5.52e-03 5.27e-03 3.7e-08
1098200 8.70e-03 8.04e-03 2.50e-04 3.34e-04 8.45e-03 7.76e-03 3.7e-08
1098300 6.07e-03 3.95e-03 2.33e-04 1.33e-04 5.80e-03 3.83e-03 3.7e-08
1098400 6.82e-03 1.05e-02 1.28e-04 3.44e-04 6.66e-03 1.02e-02 3.7e-08
1098500 6.46e-03 4.75e-03 2.72e-04 2.47e-04 6.12e-03 4.54e-03 3.7e-08
1098600 6.41e-03 9.10e-03 1.15e-04 2.40e-04 6.25e-03 8.87e-03 3.7e-08
1098700 5.03e-03 5.94e-03 1.26e-04 1.44e-04 4.90e-03 5.80e-03 3.7e-08
1098800 5.89e-03 7.18e-03 3.26e-04 2.34e-04 5.47e-03 6.97e-03 3.7e-08
1098900 6.53e-03 4.12e-03 1.39e-04 4.10e-04 6.35e-03 3.62e-03 3.7e-08
1099000 6.07e-03 1.33e-02 2.62e-04 3.03e-04 5.83e-03 1.30e-02 3.7e-08
1099100 7.99e-03 7.34e-03 1.93e-04 2.07e-04 7.72e-03 7.15e-03 3.7e-08
1099200 7.33e-03 6.61e-03 2.20e-04 5.20e-05 7.09e-03 6.49e-03 3.7e-08
1099300 6.71e-03 6.80e-03 1.00e-04 7.26e-05 6.56e-03 6.67e-03 3.7e-08
1099400 8.60e-03 3.82e-03 2.12e-04 1.93e-04 8.31e-03 3.66e-03 3.7e-08
1099500 1.04e-02 7.29e-03 2.70e-04 2.78e-04 1.01e-02 7.05e-03 3.7e-08
1099600 8.32e-03 7.03e-03 1.74e-04 2.22e-04 8.12e-03 6.83e-03 3.7e-08
1099700 6.55e-03 4.87e-03 2.09e-04 3.00e-04 6.34e-03 4.60e-03 3.7e-08
1099800 8.50e-03 6.40e-03 1.87e-04 2.38e-04 8.29e-03 6.20e-03 3.7e-08
1099900 6.77e-03 9.93e-03 3.14e-04 1.09e-04 6.45e-03 9.74e-03 3.7e-08
1100000 9.14e-03 4.81e-03 1.25e-04 1.82e-04 8.95e-03 4.66e-03 3.5e-08
units metal
boundary p p p
atom_style atomic
neighbor 2.0 bin
neigh_modify every 10 delay 0 check no
read_data crystal.lmp
pair_style deepmd frozen_graph.pb
pair_coeff * *
velocity all create 600 23456789
fix 1 all npt temp 300 300 0.5 iso 0 0 0.5
timestep 0.0005
thermo_style custom step pe ke etotal temp press vol lx ly lz
thermo 100
dump 1 all custom 50 crystal.dump id type x y z
run 1000000
write_data S300K.dat
write_restart S300K.rest log file generated by Step PotEng KinEng TotEng Temp Press Volume Lx Ly Lz
186 -4233.8215 99.194235 -4134.6273 600 208.69833 51021.622 33.156116 34.06778 45.169655
200 -4233.7428 99.095748 -4134.6471 599.40427 194.03662 51024.606 33.156762 34.068444 45.170536
300 -4229.1065 93.227609 -4135.8789 563.90944 436.82836 51234.35 33.202132 34.115061 45.232344
400 -4219.3777 81.003336 -4138.3744 489.968 699.95335 52084.956 33.384868 34.302822 45.481291
500 -4209.2071 68.421181 -4140.7859 413.86184 746.83224 53794.747 33.74625 34.674141 45.973614
600 -4201.6201 58.945985 -4142.6741 356.54886 702.37997 55741.665 34.148545 35.087497 46.521674
700 -4196.8818 52.698594 -4144.1832 318.76002 646.26422 57528.87 34.509673 35.458555 47.01365
800 -4194.2004 48.718999 -4145.4814 294.68849 549.0667 59371.756 34.874302 35.83321 47.510396
900 -4192.774 46.238338 -4146.5357 279.68362 454.09924 61188.125 35.226374 36.194962 47.990035
1000 -4192.8746 45.56056 -4147.314 275.58392 355.12232 62801.406 35.533284 36.510311 48.408149
1100 -4192.2554 44.323233 -4147.9321 268.09965 286.50554 64210.293 35.79704 36.781319 48.767471
1200 -4195.2165 46.866393 -4148.3501 283.48256 217.08625 65433.917 36.022999 37.013491 49.075303
1300 -4193.3626 44.686718 -4148.6759 270.29828 179.61693 66537.645 36.224414 37.220445 49.349698
1400 -4195.8758 47.00852 -4148.8673 284.34225 111.48583 67506.035 36.399306 37.400145 49.587958
1500 -4206.9288 57.89739 -4149.0314 350.20618 127.72645 68340.122 36.548606 37.55355 49.791354
1600 -4206.9703 57.629874 -4149.3405 348.58804 34.444852 69095.828 36.682831 37.691465 49.974213
1700 -4208.908 59.087367 -4149.8207 357.40404 -10.696354 69728.727 36.794492 37.806197 50.126333
1800 -4216.9502 66.380345 -4150.5699 401.51736 8.9990631 70123.961 36.86388 37.877493 50.220863
1900 -4235.4791 83.651861 -4151.8272 505.98824 15.437296 70269.744 36.889408 37.903723 50.25564
2000 -4245.7403 91.47274 -4154.2676 553.29469 -99.812803 70382.715 36.909166 37.924025 50.282558
2100 -4255.4298 98.072364 -4157.3574 593.2141 -44.626453 70354.401 36.904216 37.918938 50.275814
2200 -4269.5943 108.87927 -4160.715 658.58223 -106.44838 70112.123 36.861805 37.875361 50.218036
2300 -4281.986 117.18263 -4164.8034 708.8071 -268.7748 69503.132 36.754768 37.765381 50.072216
2400 -4316.5482 146.00341 -4170.5448 883.13646 -136.15906 68593.147 36.593657 37.59984 49.852728
2500 -4338.2671 159.89045 -4178.3767 967.13556 -249.89682 67579.183 36.412448 37.413648 49.605862
2600 -4363.6826 175.87487 -4187.8077 1063.8211 -184.71517 66350.607 36.19044 37.185536 49.303413
2700 -4422.2797 221.31223 -4200.9675 1338.6599 53.64806 65475.257 36.030584 37.021285 49.085636
2800 -4438.4736 222.5129 -4215.9607 1345.9224 -280.43358 64879.823 35.92103 36.908719 48.936387
2900 -4488.9285 254.70584 -4234.2227 1540.6491 -633.27729 64132.599 35.782596 36.766478 48.747794
3000 -4539.3607 282.66869 -4256.692 1709.789 -461.94578 62689.872 35.512237 36.488685 48.379475
3100 -4593.265 310.79997 -4282.4651 1879.9478 101.62736 61041.572 35.198228 36.166042 47.951691
3200 -4603.9453 290.8025 -4313.1428 1758.9883 -751.03244 59941.911 34.985581 35.947548 47.661995
3300 -4724.801 378.01185 -4346.7891 2286.4949 435.59858 58936.378 34.788848 35.745406 47.393979
3400 -4758.0974 366.94103 -4391.1564 2219.5304 -346.62982 58774.893 34.757045 35.712728 47.350653
3500 -4772.9981 340.98259 -4432.0155 2062.5145 -1384.8723 58243.417 34.651963 35.604757 47.207497
3600 -4888.9992 411.76854 -4477.2307 2490.6803 694.66416 56609.946 34.324942 35.268744 46.761985
3700 -4932.0273 406.33576 -4525.6916 2457.8188 -862.42364 55456.96 34.090307 35.027658 46.442334
3800 -4988.5168 408.91995 -4579.5968 2473.4499 -772.66915 53924.087 33.773274 34.701908 46.01043
3900 -5042.3271 405.80037 -4636.5267 2454.5804 -1264.7808 52501.868 33.473707 34.394104 45.60232
4000 -5139.1072 442.61963 -4696.4876 2677.2904 -658.44148 51091.756 33.171301 34.083383 45.190342
4100 -5239.3961 477.11238 -4762.2837 2885.9281 -20.56002 49711.639 32.869891 33.773685 44.779721
4200 -5327.0323 491.68217 -4835.3501 2974.0569 -265.61739 48887.693 32.687277 33.58605 44.530941
4300 -5427.5443 514.17322 -4913.3711 3110.0994 -1088.4835 47756.197 32.433126 33.324911 44.184702
4400 -5484.4545 486.5254 -4997.9291 2942.865 -2145.2373 46429.924 32.130061 33.013513 43.771828
4500 -5588.5608 505.01791 -5083.5429 3054.7213 -1825.3733 44877.425 31.767878 32.641371 43.278414
4600 -5699.1822 525.5729 -5173.6093 3179.0531 -1804.5493 43577.289 31.458086 32.323061 42.856374
4700 -5788.8519 523.57874 -5265.2732 3166.9909 -2292.2788 41872.238 31.042328 31.895872 42.289973
4800 -5919.2809 564.01313 -5355.2678 3411.568 -1400.6388 40146.982 30.609991 31.451646 41.700986
4900 -6017.618 566.48859 -5451.1294 3426.5414 -1332.0001 38918.455 30.294521 31.127503 41.271211
5000 -6142.0575 582.77468 -5559.2829 3525.0517 -2322.9321 37811.475 30.004526 30.829533 40.876141
5100 -6263.8556 590.20537 -5673.6502 3569.998 -2761.7679 36565.34 29.671222 30.487065 40.422071
5200 -6442.6759 646.68357 -5795.9923 3911.6199 -976.65618 35369.857 29.344271 30.151125 39.976655
5300 -6517.7361 597.00244 -5920.7337 3611.1117 -2672.5763 34147.802 29.002347 29.799799 39.510841
5400 -6643.6148 601.24108 -6042.3737 3636.7502 -2212.4089 33078.796 28.696491 29.485533 39.094163
5500 -6748.4346 594.09449 -6154.3401 3593.5223 -4245.6458 31974.776 28.373619 29.153783 38.654304
5600 -6863.1658 593.75943 -6269.4063 3591.4956 1043.8279 30715.93 27.996267 28.766055 38.140224
5700 -6949.1427 566.00868 -6383.1341 3423.6385 -1638.3828 30188.308 27.835038 28.600393 37.920578
5800 -7045.9476 545.53178 -6500.4159 3299.7791 -3591.455 29493.738 27.619904 28.379344 37.627494
5900 -7169.8397 569.9283 -6599.9114 3447.3473 675.48132 28578.808 27.331299 28.082803 37.234317
6000 -7230.2803 520.27858 -6710.0017 3147.0292 -1913.6128 28179.935 27.203549 27.95154 37.060279
6100 -7307.9124 492.22617 -6815.6863 2977.3474 -1513.1879 27748.558 27.064024 27.808179 36.8702
6200 -7384.3853 472.4631 -6911.9222 2857.8058 -4121.7166 26953.084 26.802896 27.539871 36.514457
6300 -7480.7308 472.56432 -7008.1665 2858.4181 -1792.7772 25999.533 26.483014 27.211194 36.078671
6400 -7564.2485 464.68711 -7099.5614 2810.7708 345.14772 25607.781 26.349328 27.073832 35.896547
6500 -7630.8276 447.89584 -7182.9318 2709.2049 -3285.1659 25222.693 26.216581 26.937434 35.7157
6600 -7716.1596 447.41137 -7268.7482 2706.2744 -1890.6534 24430.127 25.939054 26.652277 35.337617
6700 -7793.413 442.95802 -7350.455 2679.3373 -1244.874 23934.643 25.762493 26.470861 35.097082
6800 -7842.3669 411.10432 -7431.2626 2486.6626 -1813.32 23388.847 25.565159 26.268101 34.828248
6900 -7902.0657 393.99631 -7508.0694 2383.1807 482.22792 22841.79 25.364265 26.061683 34.554562
7000 -7958.8605 386.3266 -7572.5339 2336.7886 -569.18056 22596.839 25.273271 25.968188 34.430599
7100 -8019.2836 380.73057 -7638.5531 2302.9397 -1439.7625 22354.034 25.182424 25.874843 34.306835
7200 -8079.9209 375.1731 -7704.7478 2269.324 -1972.657 21873.423 25.000641 25.688062 34.059187
7300 -8132.2537 358.42916 -7773.8246 2168.0443 -2905.1032 21076.508 24.693261 25.37223 33.640433 my question is
Thanks! |
Beta Was this translation helpful? Give feedback.
Replies: 1 comment 5 replies
-
MLIAPs struggle to extrapolate (if you can consider them as able to extrapolate at all), and thus you need to include structures within your training set that bound the set of configurations that will be encountered during a NPT simulation. Looking at the lammps results, it seems that your potential struggles when the volume of the cell moves too far from your starting point, which indicates to me that you may need to include more structures with significant (volumetric or otherwise) strain applied to them within the training set. If you're doing active learning, I'd suggest ensuring that the final steps of active learning heavily resemble your eventual use case in terms of lammps settings. See this FAQ within the documentation https://docs.deepmodeling.com/projects/deepmd/en/master/troubleshooting/md-energy-undulation.html As for how to tell if the accuracy of your trained MLP is good enough, there's a number of methods ranging from the length of a stable simulation, force accuracy on a separate test set (eg check performance on structures from highish temperature AIMD), or checking vs several computed properties of interest (eg elastic constants, diffusion rates, phase transition temperatures, etc). It really depends on what you aim to use your potential for. See the following for examples of validating MLPs, though the methods they show are not the only ones that exist, nor are they the only reviews on this subject, just the first ones I remembered. Morrow, Joe D., John LA Gardner, and Volker L. Deringer. "How to validate machine-learned interatomic potentials." arXiv preprint arXiv:2211.12484 (2022). Stocker, Sina, et al. "How robust are modern graph neural network potentials in long and hot molecular dynamics simulations?." Machine Learning: Science and Technology 3.4 (2022): 045010. |
Beta Was this translation helpful? Give feedback.
MLIAPs struggle to extrapolate (if you can consider them as able to extrapolate at all), and thus you need to include structures within your training set that bound the set of configurations that will be encountered during a NPT simulation. Looking at the lammps results, it seems that your potential struggles when the volume of the cell moves too far from your starting point, which indicates to me that you may need to include more structures with significant (volumetric or otherwise) strain applied to them within the training set. If you're doing active learning, I'd suggest ensuring that the final steps of active learning heavily resemble your eventual use case in terms of lammps settings.