Replies: 1 comment 9 replies
-
We fixed a bug for |
Beta Was this translation helpful? Give feedback.
9 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
I trained four potential functions using the same dataset with descriptors "se_a" and "se_atten_v2," with the only difference being in the descriptor settings. When I re-evaluated them on the same dataset, I found that "se_atten_v2" performed worse than "se_a." The curve for "se_atten_v2" was not as smooth. Why did this happen?


The following is my "param.json" file. Since I only extracted a subset of the dataset for testing, this subset actually only contains four elements: C, Cu, H, and N.
{
"type_map": [
"C",
"Cu",
"H",
"N",
"O",
"S"
],
"mass_map": [
12.011,
63.546,
1.0080,
14.007,
15.999,
32.06
],
"init_data_prefix": "/data/jpqiu/0_project/delta_test/0_dpa/00.init_data",
"init_data_sys": [
"06.dpa_DMDA",
"07.dpa_DMDA",
"dpa2_DMDA",
"dpa2_manual_DMDA",
"dp_opt_DMDA",
"manual_DMDA",
"multi_DMDA",
"opt_DMDA"
],
"init_batch_size": [
1, 1, 1, 1, 1, 1, 1, 1
],
"sys_configs": [
],
"sys_batch_size": [
],
"charges": [
],
"uks": [
],
"_comment": " that's all ",
"numb_models": 4,
"train_param": "input.json",
"default_training_param": {
"model": {
"descriptor": {
"type": "se_atten_v2",
"rcut_smth": 0.50,
"rcut": 6.00,
"sel": "auto",
"neuron": [25, 50, 100],
"axis_neuron": 16,
"resnet_dt": false,
"attn": 128,
"attn_layer": 2,
"attn_mask": false,
"attn_dotr": true,
"precision": "float64",
"seed": 1
},
"fitting_net": {
"neuron": [
240,
240,
240
],
"resnet_dt": true,
"precision": "float64",
"seed": 1
}
},
"learning_rate": {
"type": "exp",
"start_lr": 0.001,
"decay_steps": 2500,
"_comment": "nope",
"decay_rate": 0.95
},
"loss": {
"start_pref_e": 0.02,
"limit_pref_e": 1,
"start_pref_f": 1000,
"limit_pref_f": 1,
"start_pref_v": 0,
"limit_pref_v": 0
},
"training": {
"systems": [],
"set_prefix": "set",
"stop_batch": 500000,
"batch_size": 1,
"seed": 1,
"disp_file": "lcurve.out",
"disp_freq": 100,
"numb_test": 10,
"save_freq": 1000,
"save_ckpt": "model.ckpt",
"disp_training": true,
"time_training": true,
"profiling": false,
"profiling_file": "timeline.json"
}
},
Beta Was this translation helpful? Give feedback.
All reactions