|
| 1 | +import json |
| 2 | +from pathlib import Path |
| 3 | +from typing import Any |
| 4 | + |
| 5 | +import joblib |
| 6 | +import numpy as np |
| 7 | +import numpy.typing as npt |
| 8 | +from sklearn.multioutput import MultiOutputClassifier |
| 9 | +from sklearn.utils import all_estimators |
| 10 | +from typing_extensions import Self |
| 11 | + |
| 12 | +from autointent.context import Context |
| 13 | +from autointent.context.embedder import Embedder |
| 14 | +from autointent.context.vector_index_client import VectorIndexClient |
| 15 | +from autointent.custom_types import BaseMetadataDict, LabelType |
| 16 | +from autointent.modules.scoring.base import ScoringModule |
| 17 | + |
| 18 | +AVAILIABLE_CLASSIFIERS = {name: class_ for name, class_ in all_estimators() if hasattr(class_, "predict_proba")} |
| 19 | + |
| 20 | + |
| 21 | +class SklearnScorerDumpDict(BaseMetadataDict): |
| 22 | + multilabel: bool |
| 23 | + batch_size: int |
| 24 | + max_length: int | None |
| 25 | + |
| 26 | + |
| 27 | +class SklearnScorer(ScoringModule): |
| 28 | + classifier_file_name: str = "classifier.joblib" |
| 29 | + embedding_model_subdir: str = "embedding_model" |
| 30 | + precomputed_embeddings: bool = False |
| 31 | + db_dir: str |
| 32 | + name = "sklearn" |
| 33 | + |
| 34 | + def __init__( |
| 35 | + self, |
| 36 | + model_name: str, |
| 37 | + clf_name: str, |
| 38 | + cv: int = 3, |
| 39 | + clf_args: dict = {}, # noqa: B006 |
| 40 | + n_jobs: int = -1, |
| 41 | + device: str = "cpu", |
| 42 | + seed: int = 0, |
| 43 | + batch_size: int = 32, |
| 44 | + max_length: int | None = None, |
| 45 | + ) -> None: |
| 46 | + self.cv = cv |
| 47 | + self.n_jobs = n_jobs |
| 48 | + self.device = device |
| 49 | + self.seed = seed |
| 50 | + self.model_name = model_name |
| 51 | + self.batch_size = batch_size |
| 52 | + self.max_length = max_length |
| 53 | + self.clf_name = clf_name |
| 54 | + self.clf_args = clf_args |
| 55 | + |
| 56 | + @classmethod |
| 57 | + def from_context( |
| 58 | + cls, |
| 59 | + context: Context, |
| 60 | + clf_name: str, |
| 61 | + clf_args: dict = {}, # noqa: B006 |
| 62 | + model_name: str | None = None, |
| 63 | + ) -> Self: |
| 64 | + if model_name is None: |
| 65 | + model_name = context.optimization_info.get_best_embedder() |
| 66 | + precomputed_embeddings = True |
| 67 | + else: |
| 68 | + precomputed_embeddings = context.vector_index_client.exists(model_name) |
| 69 | + context.device = context.get_device() |
| 70 | + context.embedder_batch_size = context.get_batch_size() |
| 71 | + context.embedder_max_length = context.get_max_length() |
| 72 | + context.db_dir = context.get_db_dir() |
| 73 | + instance = cls( |
| 74 | + model_name=model_name, |
| 75 | + device=context.device, |
| 76 | + seed=context.seed, |
| 77 | + batch_size=context.embedder_batch_size, |
| 78 | + max_length=context.embedder_max_length, |
| 79 | + clf_name=clf_name, |
| 80 | + clf_args=clf_args, |
| 81 | + ) |
| 82 | + instance.precomputed_embeddings = precomputed_embeddings |
| 83 | + instance.db_dir = str(context.db_dir) |
| 84 | + return instance |
| 85 | + |
| 86 | + def fit( |
| 87 | + self, |
| 88 | + utterances: list[str], |
| 89 | + labels: list[LabelType], |
| 90 | + ) -> None: |
| 91 | + self._multilabel = isinstance(labels[0], list) |
| 92 | + |
| 93 | + if self.precomputed_embeddings: |
| 94 | + # this happens only when LinearScorer is within Pipeline opimization after RetrievalNode optimization |
| 95 | + vector_index_client = VectorIndexClient(self.device, self.db_dir, self.batch_size, self.max_length) |
| 96 | + vector_index = vector_index_client.get_index(self.model_name) |
| 97 | + features = vector_index.get_all_embeddings() |
| 98 | + if len(features) != len(utterances): |
| 99 | + msg = "Vector index mismatches provided utterances" |
| 100 | + raise ValueError(msg) |
| 101 | + embedder = vector_index.embedder |
| 102 | + else: |
| 103 | + embedder = Embedder( |
| 104 | + device=self.device, model_name=self.model_name, batch_size=self.batch_size, max_length=self.max_length |
| 105 | + ) |
| 106 | + features = embedder.embed(utterances) |
| 107 | + base_clf = AVAILIABLE_CLASSIFIERS.get(self.clf_name)(**self.clf_args) |
| 108 | + |
| 109 | + clf = MultiOutputClassifier(base_clf) if self._multilabel else base_clf |
| 110 | + |
| 111 | + clf.fit(features, labels) |
| 112 | + |
| 113 | + self._clf = clf |
| 114 | + self._embedder = embedder |
| 115 | + |
| 116 | + def predict(self, utterances: list[str]) -> npt.NDArray[Any]: |
| 117 | + features = self._embedder.embed(utterances) |
| 118 | + probas = self._clf.predict_proba(features) |
| 119 | + if self._multilabel: |
| 120 | + probas = np.stack(probas, axis=1)[..., 1] |
| 121 | + return probas # type: ignore[no-any-return] |
| 122 | + |
| 123 | + def clear_cache(self) -> None: |
| 124 | + self._embedder.delete() |
| 125 | + |
| 126 | + def dump(self, path: str) -> None: |
| 127 | + self.metadata = SklearnScorerDumpDict( |
| 128 | + multilabel=self._multilabel, |
| 129 | + batch_size=self.batch_size, |
| 130 | + max_length=self.max_length, |
| 131 | + ) |
| 132 | + |
| 133 | + dump_dir = Path(path) |
| 134 | + |
| 135 | + metadata_path = dump_dir / self.metadata_dict_name |
| 136 | + with metadata_path.open("w") as file: |
| 137 | + json.dump(self.metadata, file, indent=4) |
| 138 | + |
| 139 | + # dump sklearn model |
| 140 | + clf_path = dump_dir / self.classifier_file_name |
| 141 | + joblib.dump(self._clf, clf_path) |
| 142 | + |
| 143 | + # dump sentence transformer model |
| 144 | + self._embedder.dump(dump_dir / self.embedding_model_subdir) |
| 145 | + |
| 146 | + def load(self, path: str) -> None: |
| 147 | + dump_dir = Path(path) |
| 148 | + |
| 149 | + metadata_path = dump_dir / self.metadata_dict_name |
| 150 | + with metadata_path.open() as file: |
| 151 | + metadata: SklearnScorerDumpDict = json.load(file) |
| 152 | + self._multilabel = metadata["multilabel"] |
| 153 | + |
| 154 | + # load sklearn model |
| 155 | + clf_path = dump_dir / self.classifier_file_name |
| 156 | + self._clf = joblib.load(clf_path) |
| 157 | + |
| 158 | + # load sentence transformer model |
| 159 | + embedder_dir = dump_dir / self.embedding_model_subdir |
| 160 | + self._embedder = Embedder( |
| 161 | + device=self.device, |
| 162 | + model_name=embedder_dir, |
| 163 | + batch_size=metadata["batch_size"], |
| 164 | + max_length=metadata["max_length"], |
| 165 | + ) |
0 commit comments