@@ -45,6 +45,35 @@ class AdaptivePredictor(PredictionModule):
4545 :ivar _r: Scaling factor for thresholds.
4646 :ivar tags: List of Tag objects for mutually exclusive classes.
4747 :ivar name: Name of the predictor, defaults to "adaptive".
48+
49+ Parameters
50+ ----------
51+ search_space : list[float], optional
52+ List of threshold scaling factors to search for optimal performance.
53+ Defaults to a range between 0 and 1.
54+
55+ Examples
56+ --------
57+ >>> from autointent.modules import AdaptivePredictor
58+ >>> import numpy as np
59+ >>> scores = np.array([[0.8, 0.1, 0.4], [0.2, 0.9, 0.5]])
60+ >>> labels = [[1, 0, 0], [0, 1, 0]]
61+ >>> search_space = [0.1, 0.2, 0.3, 0.5, 0.7]
62+ >>> predictor = AdaptivePredictor(search_space=search_space)
63+ >>> predictor.fit(scores, labels)
64+ >>> predictions = predictor.predict(scores)
65+ >>> print(predictions)
66+ [[1 0 0]
67+ [0 1 0]]
68+
69+ >>> # Save and load the predictor
70+ >>> predictor.dump("path/to/save")
71+ >>> predictor_loaded = AdaptivePredictor()
72+ >>> predictor_loaded.load("path/to/save")
73+ >>> predictions = predictor_loaded.predict(scores)
74+ >>> print(predictions)
75+ [[1 0 0]
76+ [0 1 0]]
4877 """
4978
5079 metadata_dict_name = "metadata.json"
0 commit comments