@@ -57,6 +57,43 @@ class MLKnnScorer(ScoringModule):
5757 :ivar metadata: Metadata about the scorer's configuration.
5858 :ivar prebuilt_index: Flag indicating if the vector index is prebuilt.
5959 :ivar name: Name of the scorer, defaults to "mlknn".
60+
61+ Example
62+ --------
63+ Creating and fitting the MLKnnScorer:
64+ >>> from knn_scorer import MLKnnScorer
65+ >>> utterances = ["what is your name?", "how are you?"]
66+ >>> labels = [["greeting"], ["greeting"]]
67+ >>> scorer = MLKnnScorer(
68+ >>> k=5,
69+ >>> embedder_name="bert-base",
70+ >>> db_dir="/path/to/database",
71+ >>> s=1.0,
72+ >>> ignore_first_neighbours=0,
73+ >>> device="cuda",
74+ >>> batch_size=32,
75+ >>> max_length=128
76+ >>> )
77+ >>> scorer.fit(utterances, labels)
78+
79+ Predicting probabilities:
80+ >>> test_utterances = ["Hi!", "What's up?"]
81+ >>> probabilities = scorer.predict(test_utterances)
82+ >>> print(probabilities) # Outputs predicted probabilities for each label
83+
84+ Predicting labels:
85+ >>> predicted_labels = scorer.predict_labels(test_utterances, thresh=0.5)
86+ >>> print(predicted_labels) # Outputs binary array for each label prediction
87+
88+ Saving and loading the scorer:
89+ >>> scorer.dump("outputs/")
90+ >>> loaded_scorer = MLKnnScorer(
91+ >>> k=5,
92+ >>> embedder_name="bert-base",
93+ >>> db_dir="/path/to/database",
94+ >>> device="cuda"
95+ >>> )
96+ >>> loaded_scorer.load("outputs/")
6097 """
6198
6299 arrays_filename : str = "probs.npz"
0 commit comments