|
| 1 | +# %% [markdown] |
| 2 | +""" |
| 3 | +# Working with data |
| 4 | +""" |
| 5 | + |
| 6 | +# %% |
| 7 | +import importlib.resources as ires |
| 8 | + |
| 9 | +import datasets |
| 10 | + |
| 11 | +from autointent.context.data_handler import Dataset |
| 12 | + |
| 13 | +# %% |
| 14 | +datasets.logging.disable_progress_bar() # disable tqdm outputs |
| 15 | + |
| 16 | +# %% [markdown] |
| 17 | +""" |
| 18 | +## Creating a dataset |
| 19 | +
|
| 20 | +To create a dataset, you need to provide a training split containing samples with utterances and labels, as shown below: |
| 21 | +
|
| 22 | +```json |
| 23 | +{ |
| 24 | + "train": [ |
| 25 | + { |
| 26 | + "utterance": "Hello!", |
| 27 | + "label": 0 |
| 28 | + }, |
| 29 | + ... |
| 30 | + ] |
| 31 | +} |
| 32 | +``` |
| 33 | +
|
| 34 | +For a multilabel dataset, the `label` field should be a list of integers representing the corresponding class labels. |
| 35 | +
|
| 36 | +### Handling out-of-scope (OOS) samples |
| 37 | +
|
| 38 | +To indicate that a sample is out-of-scope (OOS), omit the `label` field from the sample dictionary. For example: |
| 39 | +
|
| 40 | +```json |
| 41 | +{ |
| 42 | + "train": [ |
| 43 | + { |
| 44 | + "utterance": "OOS request" |
| 45 | + }, |
| 46 | + ... |
| 47 | + ] |
| 48 | +} |
| 49 | +``` |
| 50 | +
|
| 51 | +### Validation and test splits |
| 52 | +
|
| 53 | +By default, a portion of the training split will be allocated for validation and testing. |
| 54 | +However, you can also specify a test split explicitly: |
| 55 | +
|
| 56 | +```json |
| 57 | +{ |
| 58 | + "train": [ |
| 59 | + { |
| 60 | + "utterance": "Hello!", |
| 61 | + "label": 0 |
| 62 | + }, |
| 63 | + ... |
| 64 | + ], |
| 65 | + "test": [ |
| 66 | + { |
| 67 | + "utterance": "Hi!", |
| 68 | + "label": 0 |
| 69 | + }, |
| 70 | + ... |
| 71 | + ] |
| 72 | +} |
| 73 | +``` |
| 74 | +
|
| 75 | +### Adding metadata to intents |
| 76 | +
|
| 77 | +You can add metadata to intents in your dataset, such as |
| 78 | +regular expressions, intent names, descriptions, or tags, using the `intents` field: |
| 79 | +
|
| 80 | +```json |
| 81 | +{ |
| 82 | + "train": [ |
| 83 | + { |
| 84 | + "utterance": "Hello!", |
| 85 | + "label": 0 |
| 86 | + }, |
| 87 | + ... |
| 88 | + ], |
| 89 | + "intents": [ |
| 90 | + { |
| 91 | + "id": 0, |
| 92 | + "name": "greeting", |
| 93 | + "tags": ["conversation_start"], |
| 94 | + "regexp_partial_match": ["\bhello\b"], |
| 95 | + "regexp_full_match": ["^hello$"], |
| 96 | + "description": "User wants to initiate a conversation with a greeting." |
| 97 | + } |
| 98 | + ... |
| 99 | + ] |
| 100 | +} |
| 101 | +``` |
| 102 | +
|
| 103 | +- `name`: A human-readable representation of the intent. |
| 104 | +- `tags`: Used in multilabel scenarios to predict the most probable class listed in a specific tag. |
| 105 | +- `regexp_partial_match` and `regexp_full_match`: Used by the `RegExp` module to predict intents based on provided patterns. |
| 106 | +- `description`: Used by the `DescriptionScorer` to calculate scores based on the similarity between an utterance and intent descriptions. |
| 107 | +
|
| 108 | +All fields in the `intents` list are optional except for `id`. |
| 109 | +""" |
| 110 | + |
| 111 | +# %% [markdown] |
| 112 | +""" |
| 113 | +## Loading a dataset |
| 114 | +
|
| 115 | +There are three main ways to load your dataset: |
| 116 | +
|
| 117 | +1. From a Python dictionary. |
| 118 | +2. From a JSON file. |
| 119 | +3. Directly from the Hugging Face Hub. |
| 120 | +""" |
| 121 | + |
| 122 | +# %% [markdown] |
| 123 | +""" |
| 124 | +### Creating a dataset from a Python dictionary |
| 125 | +""" |
| 126 | + |
| 127 | +# %% |
| 128 | +dataset = Dataset.from_dict( |
| 129 | + { |
| 130 | + "train": [ |
| 131 | + { |
| 132 | + "utterance": "Please help me with my card. It won't activate.", |
| 133 | + "label": 0, |
| 134 | + }, |
| 135 | + { |
| 136 | + "utterance": "I tried but am unable to activate my card.", |
| 137 | + "label": 0, |
| 138 | + }, |
| 139 | + { |
| 140 | + "utterance": "I want to open an account for my children.", |
| 141 | + "label": 1, |
| 142 | + }, |
| 143 | + { |
| 144 | + "utterance": "How old do you need to be to use the bank's services?", |
| 145 | + "label": 1, |
| 146 | + }, |
| 147 | + ], |
| 148 | + "test": [ |
| 149 | + { |
| 150 | + "utterance": "I want to start using my card.", |
| 151 | + "label": 0, |
| 152 | + }, |
| 153 | + { |
| 154 | + "utterance": "How old do I need to be?", |
| 155 | + "label": 1, |
| 156 | + }, |
| 157 | + ], |
| 158 | + "intents": [ |
| 159 | + { |
| 160 | + "id": 0, |
| 161 | + "name": "activate_my_card", |
| 162 | + }, |
| 163 | + { |
| 164 | + "id": 1, |
| 165 | + "name": "age_limit", |
| 166 | + }, |
| 167 | + ], |
| 168 | + }, |
| 169 | +) |
| 170 | + |
| 171 | +# %% [markdown] |
| 172 | +""" |
| 173 | +### Loading a dataset from a file |
| 174 | +
|
| 175 | +The AutoIntent library includes sample datasets. |
| 176 | +For example, you can load the `autointent/datafiles/dstc3-20shot.json` file like this: |
| 177 | +""" |
| 178 | + |
| 179 | +# %% |
| 180 | +dataset = Dataset.from_json( |
| 181 | + ires.files("autointent.datafiles").joinpath("dstc3-20shot.json"), |
| 182 | +) |
| 183 | + |
| 184 | +# %% [markdown] |
| 185 | +""" |
| 186 | +### Loading a dataset from the Hugging Face Hub |
| 187 | +
|
| 188 | +If your dataset on the Hugging Face Hub matches the required format, you can load it directly using its repository ID: |
| 189 | +""" |
| 190 | + |
| 191 | +# %% |
| 192 | +# dataset = Dataset.from_datasets("<repo_id>") |
| 193 | + |
| 194 | +# %% [markdown] |
| 195 | +""" |
| 196 | +### Accessing dataset splits |
| 197 | +""" |
| 198 | + |
| 199 | +# %% |
| 200 | +dataset = Dataset.from_json( |
| 201 | + ires.files("autointent.datafiles").joinpath("banking77.json"), |
| 202 | +) |
| 203 | + |
| 204 | +# %% [markdown] |
| 205 | +""" |
| 206 | +The `Dataset` class organizes your data as a dictionary of splits (`str: datasets.Dataset`). |
| 207 | +For example, after initialization, an `oos` key may be added if OOS samples are provided. |
| 208 | +In the case of the `banking77` dataset, only the `train` split is available, which you can access as shown below: |
| 209 | +""" |
| 210 | + |
| 211 | +# %% |
| 212 | +dataset["train"] |
| 213 | + |
| 214 | +# %% [markdown] |
| 215 | +""" |
| 216 | +### Working with dataset splits |
| 217 | +
|
| 218 | +Each split in the `Dataset` class is an instance of [datasets.Dataset](https://huggingface.co/docs/datasets/en/package_reference/main_classes#datasets.Dataset), |
| 219 | +so you can work with them accordingly. |
| 220 | +""" |
| 221 | + |
| 222 | +# %% |
| 223 | +dataset["train"][:5] # get first 5 train samples |
| 224 | + |
| 225 | +# %% [markdown] |
| 226 | +""" |
| 227 | +### Working with intents |
| 228 | +
|
| 229 | +Metadata that you added to intents in your dataset is stored in `intents: list[Intent]` attribute. |
| 230 | +""" |
| 231 | + |
| 232 | +# %% |
| 233 | +dataset.intents[0] # get intent (id=0) |
| 234 | + |
| 235 | +# %% [markdown] |
| 236 | +""" |
| 237 | +### Pushing a dataset to the Hugging Face Hub |
| 238 | +
|
| 239 | +To share your dataset on the Hugging Face Hub, use the `push_to_hub` method. |
| 240 | +Ensure that you are logged in using the `huggingface-cli` tool: |
| 241 | +""" |
| 242 | + |
| 243 | +# %% |
| 244 | +# dataset.push_to_hub("<repo_id>") |
0 commit comments