|
| 1 | +# pylint: disable=missing-return-doc, missing-param-doc, missing-function-docstring |
| 2 | +import dbally |
| 3 | +import asyncio |
| 4 | +import typing |
| 5 | +import json |
| 6 | +import traceback |
| 7 | +import os |
| 8 | + |
| 9 | +import tqdm.asyncio |
| 10 | +import sqlalchemy |
| 11 | +import pydantic |
| 12 | +from typing_extensions import TypeAlias |
| 13 | +from copy import deepcopy |
| 14 | +from sqlalchemy import create_engine |
| 15 | +from sqlalchemy.ext.automap import automap_base, AutomapBase |
| 16 | +from dataclasses import dataclass, field |
| 17 | + |
| 18 | +from dbally import decorators, SqlAlchemyBaseView |
| 19 | +from dbally.audit.event_handlers.cli_event_handler import CLIEventHandler |
| 20 | +from dbally.llms.litellm import LiteLLM |
| 21 | +from dbally.context import BaseCallerContext |
| 22 | + |
| 23 | + |
| 24 | +SQLITE_DB_FILE_REL_PATH = "../../examples/recruiting/data/candidates.db" |
| 25 | +engine = create_engine(f"sqlite:///{os.path.abspath(SQLITE_DB_FILE_REL_PATH)}") |
| 26 | + |
| 27 | +Base: AutomapBase = automap_base() |
| 28 | +Base.prepare(autoload_with=engine) |
| 29 | + |
| 30 | +Candidate = Base.classes.candidates |
| 31 | + |
| 32 | + |
| 33 | +class MyData(BaseCallerContext, pydantic.BaseModel): |
| 34 | + first_name: str |
| 35 | + surname: str |
| 36 | + position: str |
| 37 | + years_of_experience: int |
| 38 | + university: str |
| 39 | + skills: typing.List[str] |
| 40 | + country: str |
| 41 | + |
| 42 | + |
| 43 | +class OpenPosition(BaseCallerContext, pydantic.BaseModel): |
| 44 | + position: str |
| 45 | + min_years_of_experience: int |
| 46 | + graduated_from_university: str |
| 47 | + required_skills: typing.List[str] |
| 48 | + |
| 49 | + |
| 50 | +class CandidateView(SqlAlchemyBaseView): |
| 51 | + """ |
| 52 | + A view for retrieving candidates from the database. |
| 53 | + """ |
| 54 | + |
| 55 | + def get_select(self) -> sqlalchemy.Select: |
| 56 | + """ |
| 57 | + Creates the initial SqlAlchemy select object, which will be used to build the query. |
| 58 | + """ |
| 59 | + return sqlalchemy.select(Candidate) |
| 60 | + |
| 61 | + @decorators.view_filter() |
| 62 | + def at_least_experience(self, years: typing.Union[int, OpenPosition]) -> sqlalchemy.ColumnElement: |
| 63 | + """ |
| 64 | + Filters candidates with at least `years` of experience. |
| 65 | + """ |
| 66 | + if isinstance(years, OpenPosition): |
| 67 | + years = years.min_years_of_experience |
| 68 | + |
| 69 | + return Candidate.years_of_experience >= years |
| 70 | + |
| 71 | + @decorators.view_filter() |
| 72 | + def at_most_experience(self, years: typing.Union[int, MyData]) -> sqlalchemy.ColumnElement: |
| 73 | + if isinstance(years, MyData): |
| 74 | + years = years.years_of_experience |
| 75 | + |
| 76 | + return Candidate.years_of_experience <= years |
| 77 | + |
| 78 | + @decorators.view_filter() |
| 79 | + def has_position(self, position: typing.Union[str, OpenPosition]) -> sqlalchemy.ColumnElement: |
| 80 | + if isinstance(position, OpenPosition): |
| 81 | + position = position.position |
| 82 | + |
| 83 | + return Candidate.position == position |
| 84 | + |
| 85 | + @decorators.view_filter() |
| 86 | + def senior_data_scientist_position(self) -> sqlalchemy.ColumnElement: |
| 87 | + """ |
| 88 | + Filters candidates that can be considered for a senior data scientist position. |
| 89 | + """ |
| 90 | + return sqlalchemy.and_( |
| 91 | + Candidate.position.in_(["Data Scientist", "Machine Learning Engineer", "Data Engineer"]), |
| 92 | + Candidate.years_of_experience >= 3, |
| 93 | + ) |
| 94 | + |
| 95 | + @decorators.view_filter() |
| 96 | + def from_country(self, country: typing.Union[str, MyData]) -> sqlalchemy.ColumnElement: |
| 97 | + """ |
| 98 | + Filters candidates from a specific country. |
| 99 | + """ |
| 100 | + if isinstance(country, MyData): |
| 101 | + return Candidate.country == country.country |
| 102 | + |
| 103 | + return Candidate.country == country |
| 104 | + |
| 105 | + @decorators.view_filter() |
| 106 | + def graduated_from_university(self, university: typing.Union[str, MyData]) -> sqlalchemy.ColumnElement: |
| 107 | + if isinstance(university, MyData): |
| 108 | + university = university.university |
| 109 | + |
| 110 | + return Candidate.university == university |
| 111 | + |
| 112 | + @decorators.view_filter() |
| 113 | + def has_skill(self, skill: str) -> sqlalchemy.ColumnElement: |
| 114 | + return Candidate.skills.like(f"%{skill}%") |
| 115 | + |
| 116 | + @decorators.view_filter() |
| 117 | + def knows_data_analysis(self) -> sqlalchemy.ColumnElement: |
| 118 | + return Candidate.tags.like("%Data Analysis%") |
| 119 | + |
| 120 | + @decorators.view_filter() |
| 121 | + def knows_python(self) -> sqlalchemy.ColumnElement: |
| 122 | + return Candidate.skills.like("%Python%") |
| 123 | + |
| 124 | + @decorators.view_filter() |
| 125 | + def first_name_is(self, first_name: typing.Union[str, MyData]) -> sqlalchemy.ColumnElement: |
| 126 | + if isinstance(first_name, MyData): |
| 127 | + first_name = first_name.first_name |
| 128 | + |
| 129 | + return Candidate.name.startswith(first_name) |
| 130 | + |
| 131 | + |
| 132 | +OpenAILLMName: TypeAlias = typing.Literal['gpt-3.5-turbo', 'gpt-4-turbo', 'gpt-4o'] |
| 133 | + |
| 134 | + |
| 135 | +def setup_collection(model_name: OpenAILLMName) -> dbally.Collection: |
| 136 | + llm = LiteLLM(model_name=model_name) |
| 137 | + |
| 138 | + collection = dbally.create_collection("recruitment", llm) |
| 139 | + collection.add(CandidateView, lambda: CandidateView(engine)) |
| 140 | + |
| 141 | + return collection |
| 142 | + |
| 143 | + |
| 144 | +async def generate_iql_from_question( |
| 145 | + collection: dbally.Collection, |
| 146 | + model_name: OpenAILLMName, |
| 147 | + question: str, |
| 148 | + contexts: typing.Optional[typing.List[BaseCallerContext]] |
| 149 | +) -> typing.Tuple[str, OpenAILLMName, typing.Optional[str]]: |
| 150 | + |
| 151 | + try: |
| 152 | + result = await collection.ask( |
| 153 | + question, |
| 154 | + contexts=contexts, |
| 155 | + dry_run=True |
| 156 | + ) |
| 157 | + except Exception as e: |
| 158 | + exc_pretty = traceback.format_exception_only(e.__class__, e)[0] |
| 159 | + return question, model_name, f"FAILED: {exc_pretty}" |
| 160 | + |
| 161 | + out = result.metadata.get("iql") |
| 162 | + if out is None: |
| 163 | + return question, model_name, None |
| 164 | + |
| 165 | + return question, model_name, out.replace('"', '\'') |
| 166 | + |
| 167 | + |
| 168 | +@dataclass |
| 169 | +class BenchmarkConfig: |
| 170 | + dataset_path: str |
| 171 | + out_path: str |
| 172 | + n_repeats: int = 5 |
| 173 | + llms: typing.List[OpenAILLMName] = field(default_factory=lambda: ['gpt-3.5-turbo', 'gpt-4-turbo', 'gpt-4o']) |
| 174 | + |
| 175 | + |
| 176 | +async def main(config: BenchmarkConfig): |
| 177 | + test_set = None |
| 178 | + with open(config.dataset_path, 'r') as file: |
| 179 | + test_set = json.load(file) |
| 180 | + |
| 181 | + contexts = [ |
| 182 | + MyData( |
| 183 | + first_name="John", |
| 184 | + surname="Smith", |
| 185 | + years_of_experience=4, |
| 186 | + position="Data Engineer", |
| 187 | + university="University of Toronto", |
| 188 | + skills=["Python"], |
| 189 | + country="United Kingdom" |
| 190 | + ), |
| 191 | + OpenPosition( |
| 192 | + position="Machine Learning Engineer", |
| 193 | + graduated_from_university="Stanford Univeristy", |
| 194 | + min_years_of_experience=1, |
| 195 | + required_skills=["Python", "SQL"] |
| 196 | + ) |
| 197 | + ] |
| 198 | + |
| 199 | + tasks: typing.List[asyncio.Task] = [] |
| 200 | + for model_name in config.llms: |
| 201 | + collection = setup_collection(model_name) |
| 202 | + for test_case in test_set: |
| 203 | + answers = [] |
| 204 | + for _ in range(config.n_repeats): |
| 205 | + task = asyncio.create_task(generate_iql_from_question(collection, model_name, |
| 206 | + test_case["question"], contexts=contexts)) |
| 207 | + tasks.append(task) |
| 208 | + |
| 209 | + output_data = { |
| 210 | + test_case["question"]:test_case |
| 211 | + for test_case in test_set |
| 212 | + } |
| 213 | + empty_answers = {str(llm_name): [] for llm_name in config.llms} |
| 214 | + |
| 215 | + total_iter = len(config.llms) * len(test_set) * config.n_repeats |
| 216 | + for task in tqdm.asyncio.tqdm.as_completed(tasks, total=total_iter): |
| 217 | + question, llm_name, answer = await task |
| 218 | + if "answers" not in output_data[question]: |
| 219 | + output_data[question]["answers"] = deepcopy(empty_answers) |
| 220 | + |
| 221 | + output_data[question]["answers"][llm_name].append(answer) |
| 222 | + |
| 223 | + output_data_list = list(output_data.values()) |
| 224 | + |
| 225 | + with open(config.out_path, 'w') as file: |
| 226 | + file.write(json.dumps(test_set, indent=2)) |
| 227 | + |
| 228 | + |
| 229 | +if __name__ == "__main__": |
| 230 | + config = BenchmarkConfig( |
| 231 | + dataset_path="dataset/context_dataset.json", |
| 232 | + out_path="../../context_benchmark_output.json" |
| 233 | + ) |
| 234 | + |
| 235 | + asyncio.run(main(config)) |
0 commit comments