|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +import logging |
| 4 | +import re |
| 5 | +from typing import Optional, Dict, Tuple, Any |
| 6 | + |
| 7 | +from haystack import Answer |
| 8 | +from haystack.errors import AgentError |
| 9 | + |
| 10 | +logger = logging.getLogger(__name__) |
| 11 | + |
| 12 | + |
| 13 | +class AgentStep: |
| 14 | + """ |
| 15 | + The AgentStep class represents a single step in the execution of an agent. |
| 16 | +
|
| 17 | + """ |
| 18 | + |
| 19 | + def __init__( |
| 20 | + self, |
| 21 | + current_step: int = 1, |
| 22 | + max_steps: int = 10, |
| 23 | + final_answer_pattern: str = r"Final Answer\s*:\s*(.*)", |
| 24 | + prompt_node_response: str = "", |
| 25 | + transcript: str = "", |
| 26 | + ): |
| 27 | + """ |
| 28 | + :param current_step: The current step in the execution of the agent. |
| 29 | + :param max_steps: The maximum number of steps the agent can execute. |
| 30 | + :param final_answer_pattern: The regex pattern to extract the final answer from the PromptNode response. |
| 31 | + :param prompt_node_response: The PromptNode response received. |
| 32 | + :param transcript: The full Agent execution transcript based on the Agent's initial prompt template and the |
| 33 | + text it generated during execution up to this step. The transcript is used to generate the next prompt. |
| 34 | + """ |
| 35 | + self.current_step = current_step |
| 36 | + self.max_steps = max_steps |
| 37 | + self.final_answer_pattern = final_answer_pattern |
| 38 | + self.prompt_node_response = prompt_node_response |
| 39 | + self.transcript = transcript |
| 40 | + |
| 41 | + def prepare_prompt(self): |
| 42 | + """ |
| 43 | + Prepares the prompt for the next step. |
| 44 | + """ |
| 45 | + return self.transcript |
| 46 | + |
| 47 | + def create_next_step(self, prompt_node_response: Any) -> AgentStep: |
| 48 | + """ |
| 49 | + Creates the next agent step based on the current step and the PromptNode response. |
| 50 | + :param prompt_node_response: The PromptNode response received. |
| 51 | + """ |
| 52 | + if not isinstance(prompt_node_response, list): |
| 53 | + raise AgentError( |
| 54 | + f"Agent output must be a list of str, but {prompt_node_response} received. " |
| 55 | + f"Transcript:\n{self.transcript}" |
| 56 | + ) |
| 57 | + |
| 58 | + if not prompt_node_response: |
| 59 | + raise AgentError( |
| 60 | + f"Agent output must be a non empty list of str, but {prompt_node_response} received. " |
| 61 | + f"Transcript:\n{self.transcript}" |
| 62 | + ) |
| 63 | + |
| 64 | + return AgentStep( |
| 65 | + current_step=self.current_step + 1, |
| 66 | + max_steps=self.max_steps, |
| 67 | + final_answer_pattern=self.final_answer_pattern, |
| 68 | + prompt_node_response=prompt_node_response[0], |
| 69 | + transcript=self.transcript, |
| 70 | + ) |
| 71 | + |
| 72 | + def extract_tool_name_and_tool_input(self, tool_pattern: str) -> Tuple[Optional[str], Optional[str]]: |
| 73 | + """ |
| 74 | + Parse the tool name and the tool input from the PromptNode response. |
| 75 | + :param tool_pattern: The regex pattern to extract the tool name and the tool input from the PromptNode response. |
| 76 | + :return: A tuple containing the tool name and the tool input. |
| 77 | + """ |
| 78 | + tool_match = re.search(tool_pattern, self.prompt_node_response) |
| 79 | + if tool_match: |
| 80 | + tool_name = tool_match.group(1) |
| 81 | + tool_input = tool_match.group(3) |
| 82 | + return tool_name.strip('" []\n').strip(), tool_input.strip('" \n') |
| 83 | + return None, None |
| 84 | + |
| 85 | + def final_answer(self, query: str) -> Dict[str, Any]: |
| 86 | + """ |
| 87 | + Formats an answer as a dict containing `query` and `answers` similar to the output of a Pipeline. |
| 88 | + The full transcript based on the Agent's initial prompt template and the text it generated during execution. |
| 89 | +
|
| 90 | + :param query: The search query |
| 91 | + """ |
| 92 | + answer: Dict[str, Any] = { |
| 93 | + "query": query, |
| 94 | + "answers": [Answer(answer="", type="generative")], |
| 95 | + "transcript": self.transcript, |
| 96 | + } |
| 97 | + if self.current_step >= self.max_steps: |
| 98 | + logger.warning( |
| 99 | + "Maximum number of iterations (%s) reached for query (%s). Increase max_steps " |
| 100 | + "or no answer can be provided for this query.", |
| 101 | + self.max_steps, |
| 102 | + query, |
| 103 | + ) |
| 104 | + else: |
| 105 | + final_answer = self.extract_final_answer() |
| 106 | + if not final_answer: |
| 107 | + logger.warning( |
| 108 | + "Final answer pattern (%s) not found in PromptNode response (%s).", |
| 109 | + self.final_answer_pattern, |
| 110 | + self.prompt_node_response, |
| 111 | + ) |
| 112 | + else: |
| 113 | + answer = { |
| 114 | + "query": query, |
| 115 | + "answers": [Answer(answer=final_answer, type="generative")], |
| 116 | + "transcript": self.transcript, |
| 117 | + } |
| 118 | + return answer |
| 119 | + |
| 120 | + def extract_final_answer(self) -> Optional[str]: |
| 121 | + """ |
| 122 | + Parse the final answer from the PromptNode response. |
| 123 | + :return: The final answer. |
| 124 | + """ |
| 125 | + if not self.is_last(): |
| 126 | + raise AgentError("Cannot extract final answer from non terminal step.") |
| 127 | + |
| 128 | + final_answer_match = re.search(self.final_answer_pattern, self.prompt_node_response) |
| 129 | + if final_answer_match: |
| 130 | + final_answer = final_answer_match.group(1) |
| 131 | + return final_answer.strip('" ') |
| 132 | + return None |
| 133 | + |
| 134 | + def is_final_answer_pattern_found(self) -> bool: |
| 135 | + """ |
| 136 | + Check if the final answer pattern was found in PromptNode response. |
| 137 | + :return: True if the final answer pattern was found in PromptNode response, False otherwise. |
| 138 | + """ |
| 139 | + return bool(re.search(self.final_answer_pattern, self.prompt_node_response)) |
| 140 | + |
| 141 | + def is_last(self) -> bool: |
| 142 | + """ |
| 143 | + Check if this is the last step of the Agent. |
| 144 | + :return: True if this is the last step of the Agent, False otherwise. |
| 145 | + """ |
| 146 | + return self.is_final_answer_pattern_found() or self.current_step >= self.max_steps |
| 147 | + |
| 148 | + def completed(self, observation: Optional[str]): |
| 149 | + """ |
| 150 | + Update the transcript with the observation |
| 151 | + :param observation: received observation from the Agent environment. |
| 152 | + """ |
| 153 | + self.transcript += ( |
| 154 | + f"{self.prompt_node_response}\nObservation: {observation}\nThought:" |
| 155 | + if observation |
| 156 | + else self.prompt_node_response |
| 157 | + ) |
0 commit comments