@@ -306,7 +306,7 @@ def _existing_plants_counties(
306306 "plant_id_eia" : "count" ,
307307 }
308308 )
309- aggs = aggs .loc [:, "co2e_tonnes_per_year" ].replace (
309+ aggs . loc [:, "co2e_tonnes_per_year" ] = aggs .loc [:, "co2e_tonnes_per_year" ].replace (
310310 0 , np .nan
311311 ) # sums of 0 are simply unmodeled
312312 aggs ["facility_type" ] = "power plant"
@@ -343,6 +343,7 @@ def _fossil_infrastructure_counties(engine: sa.engine.Engine) -> pd.DataFrame:
343343 infra .loc [:, "industry_sector" ] = infra .loc [:, "industry_sector" ].replace (
344344 "Liquefied Natural Gas (LNG)" , "Liquefied Natural Gas"
345345 ) # Use shorthand code to shorten column names later on
346+
346347 grp = infra .groupby (["county_id_fips" , "industry_sector" ])
347348 aggs = grp .agg (
348349 {
@@ -402,13 +403,14 @@ def _fyi_projects_counties(engine: sa.engine.Engine) -> pd.DataFrame:
402403 grp = queue .groupby (["county_id_fips" , "resource_clean" ])
403404 aggs = grp .agg (
404405 {
405- "co2e_tonnes_per_year" : "sum" , # type: ignore
406+ "co2e_tonnes_per_year" : "sum" ,
406407 "capacity_mw" : "sum" ,
407408 "project_id" : "count" ,
408409 }
409410 )
410- aggs = aggs .loc [:, "co2e_tonnes_per_year" ].replace (
411- 0 , np .nan
411+ aggs .loc [:, "co2e_tonnes_per_year" ] = aggs .loc [:, "co2e_tonnes_per_year" ].replace (
412+ 0 ,
413+ np .nan ,
412414 ) # sums of 0 are simply unmodeled
413415 aggs ["facility_type" ] = "power plant"
414416 aggs ["status" ] = "proposed"
@@ -843,9 +845,7 @@ def _get_actionable_aggs_for_wide_format(engine: sa.engine.Engine) -> pd.DataFra
843845 }
844846 )
845847 )
846- agg = agg .rename (
847- columns = rename_dict ,
848- )
848+ agg = agg .rename (columns = rename_dict )
849849 aggs .append (agg )
850850 # and avoided co2 totals. This doesn't belong in this function but c'est la vie.
851851 agg = (
@@ -888,15 +888,15 @@ def _get_actionable_aggs_for_long_format(engine: sa.engine.Engine) -> pd.DataFra
888888
889889def _add_avoided_co2e (iso : pd .DataFrame , engine : sa .engine .Engine ) -> pd .DataFrame :
890890 emiss_fac_by_county = _get_avoided_emissions_by_county_resource (engine )
891- emiss_fac_by_county = emiss_fac_by_county ["resource_type" ].replace (
891+ emiss_fac_by_county [ "resource_type" ] = emiss_fac_by_county ["resource_type" ].replace (
892892 {
893893 "onshore_wind" : "Onshore Wind" ,
894894 "offshore_wind" : "Offshore Wind" ,
895895 "utility_pv" : "Solar" ,
896896 },
897897 )
898898 emiss_fac_by_county = emiss_fac_by_county .rename (
899- columns = {"resource_type" : "resource_clean" },
899+ columns = {"resource_type" : "resource_clean" }
900900 )
901901
902902 iso = iso .merge (
@@ -932,12 +932,10 @@ def _get_avoided_emissions_by_county_resource(engine: sa.engine.Engine) -> pd.Da
932932 emiss_fac_by_county = emiss_fac_by_county .merge (
933933 national_avgs , on = "resource_type" , how = "left"
934934 )
935- emiss_fac_by_county = emiss_fac_by_county ["co2e_tonnes_per_year_per_mw" ].fillna (
936- emiss_fac_by_county ["avg_co2" ],
937- )
938- emiss_fac_by_county = emiss_fac_by_county .drop (
939- columns = ["avg_co2" , "avert_region" ],
940- )
935+ emiss_fac_by_county ["co2e_tonnes_per_year_per_mw" ] = emiss_fac_by_county [
936+ "co2e_tonnes_per_year_per_mw"
937+ ].fillna (emiss_fac_by_county ["avg_co2" ])
938+ emiss_fac_by_county = emiss_fac_by_county .drop (columns = ["avg_co2" , "avert_region" ])
941939 return emiss_fac_by_county
942940
943941
0 commit comments