Skip to content

Commit 07d937d

Browse files
committed
local AI models onnx integration WiP and Promp nodes WiP
1 parent 0c58899 commit 07d937d

File tree

25 files changed

+1983
-29
lines changed

25 files changed

+1983
-29
lines changed
Lines changed: 52 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,52 @@
1+
---
2+
base_model: nvidia/segformer-b0-finetuned-ade-512-512
3+
library_name: transformers.js
4+
pipeline_tag: image-segmentation
5+
---
6+
7+
https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512 with ONNX weights to be compatible with Transformers.js.
8+
9+
## Usage (Transformers.js)
10+
11+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
12+
```bash
13+
npm i @xenova/transformers
14+
```
15+
16+
**Example:** Image segmentation with `Xenova/segformer-b0-finetuned-ade-512-512`.
17+
18+
```js
19+
import { pipeline } from '@xenova/transformers';
20+
21+
// Create an image segmentation pipeline
22+
const segmenter = await pipeline('image-segmentation', 'Xenova/segformer-b0-finetuned-ade-512-512');
23+
24+
// Segment an image
25+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/house.jpg';
26+
const output = await segmenter(url);
27+
console.log(output)
28+
// [
29+
// {
30+
// score: null,
31+
// label: 'wall',
32+
// mask: RawImage { ... }
33+
// },
34+
// {
35+
// score: null,
36+
// label: 'building',
37+
// mask: RawImage { ... }
38+
// },
39+
// ...
40+
// ]
41+
```
42+
43+
You can visualize the outputs with:
44+
```js
45+
for (const l of output) {
46+
l.mask.save(`${l.label}.png`);
47+
}
48+
```
49+
50+
---
51+
52+
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).

0 commit comments

Comments
 (0)