1111#include < algorithm>
1212#include < cinttypes>
1313#include < cmath>
14+ #if defined(__aarch64__) || defined(__ARM_NEON)
15+ #include < arm_neon.h>
16+ #endif
1417
1518/* *
1619 * For an input tensor, use the scale and zero_point arguments to quantize it.
@@ -22,6 +25,8 @@ namespace native {
2225using Tensor = exec_aten::Tensor;
2326using Scalar = exec_aten::Scalar;
2427using ScalarType = exec_aten::ScalarType;
28+ using StridesType = exec_aten::StridesType;
29+ using SizesType = exec_aten::SizesType;
2530
2631namespace {
2732
@@ -63,6 +68,183 @@ void check_dequantize_per_tensor_args(
6368 quant_max);
6469}
6570
71+ /* *
72+ * Useful to reduce a tensor `in` over a given dimension `dim` using the
73+ * reduce function `fn`, which should have the following signature:
74+ * void fn(const size_t size, const size_t stride, const size_t base_ix)
75+ * where `size` and `stride` are the size and stride of the dimension being
76+ * reduced and `base_ix` is the index of the first element of the reduction.
77+ */
78+ template <typename Fn>
79+ void apply_over_unpacked_dim (
80+ const Fn& fn,
81+ const exec_aten::Tensor& in,
82+ const int64_t & dim) {
83+ if (in.numel () == 0 ) {
84+ return ;
85+ }
86+
87+ ET_CHECK_MSG (in.dim () > 0 , " Input tensor must have at least one dimension" );
88+ ET_CHECK_VALID_DIM (dim, in.dim ());
89+
90+ const size_t d = ET_NORMALIZE_IX (dim, in.dim ());
91+ const size_t dim_size = in.size (d);
92+ const size_t outer_size = getLeadingDims (in, d);
93+ const size_t inner_size = getTrailingDims (in, d);
94+ // Loop through all outer dimensions
95+ for (size_t outer_idx = 0 ; outer_idx < outer_size; ++outer_idx) {
96+ // Loop through dim
97+ for (size_t unpacked_dim_idx = 0 ; unpacked_dim_idx < dim_size;
98+ ++unpacked_dim_idx) {
99+ fn (inner_size, outer_idx, unpacked_dim_idx);
100+ }
101+ }
102+ }
103+
104+ void dequantize_optimized (
105+ const int8_t * in,
106+ const double scale,
107+ const int64_t zero_point,
108+ float * out,
109+ int64_t quant_min,
110+ int64_t quant_max,
111+ size_t numel) {
112+ ET_CHECK_MSG (
113+ zero_point >= quant_min,
114+ " zero_point must be %" PRId64 " <= quant_min %" PRId64,
115+ zero_point,
116+ quant_min);
117+ ET_CHECK_MSG (
118+ zero_point <= quant_max,
119+ " zero_point must be %" PRId64 " >= quant_max %" PRId64,
120+ zero_point,
121+ quant_max);
122+ size_t i = 0 ;
123+ #if defined(__aarch64__) || defined(__ARM_NEON)
124+ int8x8_t zero_point_vec = vdup_n_s8 (zero_point);
125+ float32x4_t scales = vdupq_n_f32 (static_cast <float >(scale));
126+ constexpr int32_t kVecSize = 16 ;
127+ const size_t num_vecs = numel / kVecSize ;
128+ const int8_t * in_copy = in;
129+ float * out_copy = out;
130+ for (; i < num_vecs; i++) {
131+ int8x16_t in_vec = vld1q_s8 (in_copy);
132+ int16x8_t sub_vec_0_7 = vsubl_s8 (vget_low_s8 (in_vec), zero_point_vec);
133+ int32x4_t sub_vec_0_3 = vmovl_s16 (vget_low_s16 (sub_vec_0_7));
134+ int32x4_t sub_vec_4_7 = vmovl_s16 (vget_high_s16 (sub_vec_0_7));
135+ float32x4_t out_vec_0_3 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_0_3), scales);
136+ float32x4_t out_vec_4_7 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_4_7), scales);
137+
138+ int16x8_t sub_vec_8_15 = vsubl_s8 (vget_high_s8 (in_vec), zero_point_vec);
139+ int32x4_t sub_vec_8_11 = vmovl_s16 (vget_low_s16 (sub_vec_8_15));
140+ int32x4_t sub_vec_12_15 = vmovl_s16 (vget_high_s16 (sub_vec_8_15));
141+ float32x4_t out_vec_8_11 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_8_11), scales);
142+ float32x4_t out_vec_12_15 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_12_15), scales);
143+ vst1q_f32 (out_copy + 0 , out_vec_0_3);
144+ vst1q_f32 (out_copy + 4 , out_vec_4_7);
145+ vst1q_f32 (out_copy + 8 , out_vec_8_11);
146+ vst1q_f32 (out_copy + 12 , out_vec_12_15);
147+ in_copy += kVecSize ;
148+ out_copy += kVecSize ;
149+ }
150+ i = i * kVecSize ;
151+ #endif
152+ for (; i < numel; i++) {
153+ out[i] = (in[i] - zero_point) * scale;
154+ }
155+ }
156+
157+ float get_scale (const Tensor& scale, size_t channel_ix) {
158+ ET_CHECK_MSG (
159+ (scale.scalar_type () == ScalarType::Double) ||
160+ (scale.scalar_type () == ScalarType::Float),
161+ " scale.scalar_type() %" PRId8 " is not double or float type" ,
162+ static_cast <int8_t >(scale.scalar_type ()));
163+ if (scale.scalar_type () == ScalarType::Double) {
164+ return static_cast <float >(scale.const_data_ptr <double >()[channel_ix]);
165+ } else {
166+ return scale.const_data_ptr <float >()[channel_ix];
167+ }
168+ }
169+
170+ bool can_use_optimized_dequantize_per_channel (
171+ const Tensor& in,
172+ const ScalarType in_dtype,
173+ exec_aten::optional<ScalarType>& out_dtype) {
174+ bool is_contiguous = false ;
175+ #ifdef USE_ATEN_LIB
176+ is_contiguous = in.is_contiguous ();
177+ #else
178+ is_contiguous = executorch::runtime::is_contiguous_dim_order (
179+ in.dim_order ().data (), in.dim ());
180+ #endif
181+ if (!is_contiguous || (in_dtype != ScalarType::Char) ||
182+ (out_dtype.has_value () && out_dtype.value () != ScalarType::Float)) {
183+ return false ;
184+ }
185+ return true ;
186+ }
187+
188+ void dequantize_per_channel_optimized (
189+ const Tensor& in,
190+ const Tensor& scales,
191+ const optional<Tensor>& opt_zero_points,
192+ Tensor& out,
193+ int64_t axis,
194+ int64_t quant_min,
195+ int64_t quant_max,
196+ ScalarType in_dtype,
197+ exec_aten::optional<ScalarType>& out_dtype) {
198+ check_dequantize_per_tensor_args (
199+ in, quant_min, quant_max, in_dtype, out_dtype, out);
200+ ET_CHECK_MSG (
201+ in_dtype == ScalarType::Char,
202+ " in.scalar_type() %" PRId8 " is not supported:" ,
203+ static_cast <int8_t >(in.scalar_type ()));
204+ if (out_dtype.has_value ()) {
205+ ET_CHECK_MSG (
206+ out_dtype.value () == ScalarType::Float,
207+ " Only float output is supported" );
208+ }
209+ const int8_t * in_data = in.const_data_ptr <int8_t >();
210+ float * out_data = out.mutable_data_ptr <float >();
211+ const int64_t * zero_points_data = nullptr ;
212+ if (opt_zero_points.has_value ()) {
213+ zero_points_data = opt_zero_points.value ().const_data_ptr <int64_t >();
214+ }
215+ const StridesType axis_stride = in.strides ()[axis];
216+ const StridesType outer_stride = in.size (axis) * axis_stride;
217+ apply_over_unpacked_dim (
218+ [in_data,
219+ out_data,
220+ &scales,
221+ zero_points_data,
222+ axis_stride,
223+ outer_stride,
224+ quant_min,
225+ quant_max](
226+ SizesType numel, SizesType outer_idx, SizesType unpacked_dim_idx) {
227+ const int8_t * in_data_local =
228+ in_data + outer_idx * outer_stride + unpacked_dim_idx * axis_stride;
229+ const double scale = get_scale (scales, unpacked_dim_idx);
230+ const int64_t zero_point = zero_points_data != nullptr
231+ ? zero_points_data[unpacked_dim_idx]
232+ : 0 ;
233+ float * out_data_local = out_data + outer_idx * outer_stride +
234+ unpacked_dim_idx * axis_stride;
235+ dequantize_optimized (
236+ in_data_local,
237+ scale,
238+ zero_point,
239+ out_data_local,
240+ quant_min,
241+ quant_max,
242+ numel);
243+ },
244+ in,
245+ axis);
246+ }
247+
66248} // namespace
67249
68250/* *
@@ -172,19 +354,6 @@ Tensor& dequantize_per_tensor_tensor_args_out(
172354 return out;
173355}
174356
175- float get_scale (const Tensor& scale, size_t channel_ix) {
176- ET_CHECK_MSG (
177- (scale.scalar_type () == ScalarType::Double) ||
178- (scale.scalar_type () == ScalarType::Float),
179- " scale.scalar_type() %" PRId8 " is not double or float type" ,
180- static_cast <int8_t >(scale.scalar_type ()));
181- if (scale.scalar_type () == ScalarType::Double) {
182- return static_cast <float >(scale.const_data_ptr <double >()[channel_ix]);
183- } else {
184- return scale.const_data_ptr <float >()[channel_ix];
185- }
186- }
187-
188357Tensor& dequantize_per_channel_out (
189358 const Tensor& input,
190359 const Tensor& scale,
@@ -229,6 +398,20 @@ Tensor& dequantize_per_channel_out(
229398 check_dequantize_per_tensor_args (
230399 input, quant_min, quant_max, dtype, out_dtype, out);
231400
401+ if (can_use_optimized_dequantize_per_channel (input, dtype, out_dtype)) {
402+ dequantize_per_channel_optimized (
403+ input,
404+ scale,
405+ opt_zero_points,
406+ out,
407+ axis,
408+ quant_min,
409+ quant_max,
410+ dtype,
411+ out_dtype);
412+ return out;
413+ }
414+
232415 // a list contains all dimensions except axis
233416 int64_t dims[kTensorDimensionLimit ];
234417 for (int64_t i = 0 ; i < input.dim () - 1 ; i++) {
0 commit comments