|
| 1 | +# frozen_string_literal: true |
| 2 | + |
| 3 | +class EmbeddingConfigDataMigration < ActiveRecord::Migration[7.0] |
| 4 | + def up |
| 5 | + current_model = fetch_setting("ai_embeddings_model") || "bge-large-en" |
| 6 | + provider = provider_for(current_model) |
| 7 | + |
| 8 | + if provider.present? |
| 9 | + attrs = creds_for(provider) |
| 10 | + |
| 11 | + if attrs.present? |
| 12 | + attrs = attrs.merge(model_attrs(current_model)) |
| 13 | + attrs[:display_name] = current_model |
| 14 | + attrs[:provider] = provider |
| 15 | + persist_config(attrs) |
| 16 | + end |
| 17 | + end |
| 18 | + end |
| 19 | + |
| 20 | + def down |
| 21 | + end |
| 22 | + |
| 23 | + # Utils |
| 24 | + |
| 25 | + def fetch_setting(name) |
| 26 | + DB.query_single( |
| 27 | + "SELECT value FROM site_settings WHERE name = :setting_name", |
| 28 | + setting_name: name, |
| 29 | + ).first || ENV["DISCOURSE_#{name&.upcase}"] |
| 30 | + end |
| 31 | + |
| 32 | + def provider_for(model) |
| 33 | + cloudflare_api_token = fetch_setting("ai_cloudflare_workers_api_token") |
| 34 | + |
| 35 | + return "cloudflare" if model == "bge-large-en" && cloudflare_api_token.present? |
| 36 | + |
| 37 | + tei_models = %w[bge-large-en bge-m3 multilingual-e5-large] |
| 38 | + return "hugging_face" if tei_models.include?(model) |
| 39 | + |
| 40 | + return "google" if model == "gemini" |
| 41 | + |
| 42 | + if %w[text-embedding-3-large text-embedding-3-small text-embedding-ada-002].include?(model) |
| 43 | + return "open_ai" |
| 44 | + end |
| 45 | + end |
| 46 | + |
| 47 | + def creds_for(provider) |
| 48 | + # CF |
| 49 | + if provider == "cloudflare" |
| 50 | + api_key = fetch_setting("ai_cloudflare_workers_api_token") |
| 51 | + account_id = fetch_setting("ai_cloudflare_workers_account_id") |
| 52 | + |
| 53 | + return if api_key.blank? || account_id.blank? |
| 54 | + |
| 55 | + { |
| 56 | + url: |
| 57 | + "https://api.cloudflare.com/client/v4/accounts/#{account_id}/ai/run/@cf/baai/bge-large-en-v1.5", |
| 58 | + api_key: api_key, |
| 59 | + } |
| 60 | + # TEI |
| 61 | + elsif provider == "hugging_face" |
| 62 | + endpoint = fetch_setting("ai_hugging_face_tei_endpoint") |
| 63 | + |
| 64 | + if endpoint.blank? |
| 65 | + endpoint = fetch_setting("ai_hugging_face_tei_endpoint_srv") |
| 66 | + endpoint = "srv://#{endpoint}" if endpoint.present? |
| 67 | + end |
| 68 | + |
| 69 | + api_key = fetch_setting("ai_hugging_face_tei_api_key") |
| 70 | + |
| 71 | + return if endpoint.blank? || api_key.blank? |
| 72 | + |
| 73 | + { url: endpoint, api_key: api_key } |
| 74 | + # Gemini |
| 75 | + elsif provider == "google" |
| 76 | + api_key = fetch_setting("ai_gemini_api_key") |
| 77 | + |
| 78 | + return if api_key.blank? |
| 79 | + |
| 80 | + { |
| 81 | + url: "https://generativelanguage.googleapis.com/v1beta/models/embedding-001:embedContent", |
| 82 | + api_key: api_key, |
| 83 | + } |
| 84 | + |
| 85 | + # Open AI |
| 86 | + elsif provider == "open_ai" |
| 87 | + endpoint = fetch_setting("ai_openai_embeddings_url") |
| 88 | + api_key = fetch_setting("ai_openai_api_key") |
| 89 | + |
| 90 | + return if endpoint.blank? || api_key.blank? |
| 91 | + |
| 92 | + { url: endpoint, api_key: api_key } |
| 93 | + else |
| 94 | + nil |
| 95 | + end |
| 96 | + end |
| 97 | + |
| 98 | + def model_attrs(model_name) |
| 99 | + if model_name == "bge-large-en" |
| 100 | + { |
| 101 | + dimensions: 1024, |
| 102 | + max_sequence_length: 512, |
| 103 | + id: 4, |
| 104 | + pg_function: "<#>", |
| 105 | + tokenizer_class: "DiscourseAi::Tokenizer::BgeLargeEnTokenizer", |
| 106 | + } |
| 107 | + elsif model_name == "bge-m3" |
| 108 | + { |
| 109 | + dimensions: 1024, |
| 110 | + max_sequence_length: 8192, |
| 111 | + id: 8, |
| 112 | + pg_function: "<#>", |
| 113 | + tokenizer_class: "DiscourseAi::Tokenizer::BgeM3Tokenizer", |
| 114 | + } |
| 115 | + elsif model_name == "gemini" |
| 116 | + { |
| 117 | + dimensions: 768, |
| 118 | + max_sequence_length: 1536, |
| 119 | + id: 5, |
| 120 | + pg_function: "<=>", |
| 121 | + tokenizer_class: "DiscourseAi::Tokenizer::OpenAiTokenizer", |
| 122 | + } |
| 123 | + elsif model_name == "multilingual-e5-large" |
| 124 | + { |
| 125 | + dimensions: 1024, |
| 126 | + max_sequence_length: 512, |
| 127 | + id: 3, |
| 128 | + pg_function: "<=>", |
| 129 | + tokenizer_class: "DiscourseAi::Tokenizer::MultilingualE5LargeTokenizer", |
| 130 | + } |
| 131 | + elsif model_name == "text-embedding-3-large" |
| 132 | + { |
| 133 | + dimensions: 2000, |
| 134 | + max_sequence_length: 8191, |
| 135 | + id: 7, |
| 136 | + pg_function: "<=>", |
| 137 | + tokenizer_class: "DiscourseAi::Tokenizer::OpenAiTokenizer", |
| 138 | + provider_params: { |
| 139 | + model_name: "text-embedding-3-large", |
| 140 | + }, |
| 141 | + } |
| 142 | + elsif model_name == "text-embedding-3-small" |
| 143 | + { |
| 144 | + dimensions: 1536, |
| 145 | + max_sequence_length: 8191, |
| 146 | + id: 6, |
| 147 | + pg_function: "<=>", |
| 148 | + tokenizer_class: "DiscourseAi::Tokenizer::OpenAiTokenizer", |
| 149 | + provider_params: { |
| 150 | + model_name: "text-embedding-3-small", |
| 151 | + }, |
| 152 | + } |
| 153 | + else |
| 154 | + { |
| 155 | + dimensions: 1536, |
| 156 | + max_sequence_length: 8191, |
| 157 | + id: 2, |
| 158 | + pg_function: "<=>", |
| 159 | + tokenizer_class: "DiscourseAi::Tokenizer::OpenAiTokenizer", |
| 160 | + provider_params: { |
| 161 | + model_name: "text-embedding-ada-002", |
| 162 | + }, |
| 163 | + } |
| 164 | + end |
| 165 | + end |
| 166 | + |
| 167 | + def persist_config(attrs) |
| 168 | + DB.exec( |
| 169 | + <<~SQL, |
| 170 | + INSERT INTO embedding_definitions (id, display_name, dimensions, max_sequence_length, version, pg_function, provider, tokenizer_class, url, api_key, provider_params, created_at, updated_at) |
| 171 | + VALUES (:id, :display_name, :dimensions, :max_sequence_length, 1, :pg_function, :provider, :tokenizer_class, :url, :api_key, :provider_params, :now, :now) |
| 172 | + SQL |
| 173 | + id: attrs[:id], |
| 174 | + display_name: attrs[:display_name], |
| 175 | + dimensions: attrs[:dimensions], |
| 176 | + max_sequence_length: attrs[:max_sequence_length], |
| 177 | + pg_function: attrs[:pg_function], |
| 178 | + provider: attrs[:provider], |
| 179 | + tokenizer_class: attrs[:tokenizer_class], |
| 180 | + url: attrs[:url], |
| 181 | + api_key: attrs[:api_key], |
| 182 | + provider_params: attrs[:provider_params], |
| 183 | + now: Time.zone.now, |
| 184 | + ) |
| 185 | + |
| 186 | + # We hardcoded the ID to match with already generated embeddings. Let's restart the seq to avoid conflicts. |
| 187 | + DB.exec( |
| 188 | + "ALTER SEQUENCE embedding_definitions_id_seq RESTART WITH :new_seq", |
| 189 | + new_seq: attrs[:id].to_i + 1, |
| 190 | + ) |
| 191 | + |
| 192 | + DB.exec( |
| 193 | + "UPDATE site_settings SET value=:id WHERE name = 'ai_embeddings_selected_model'", |
| 194 | + id: attrs[:id], |
| 195 | + ) |
| 196 | + end |
| 197 | +end |
0 commit comments