Skip to content

Commit 2cda39a

Browse files
Update papers.bib
1 parent c7203bb commit 2cda39a

File tree

1 file changed

+4
-1
lines changed

1 file changed

+4
-1
lines changed

_bibliography/papers.bib

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,7 @@ @article{singhvi2024knowing
1111
year={2024},
1212
url={https://arxiv.org/abs/2403.13106},
1313
html={https://arxiv.org/abs/2403.13106},
14+
dimensions={true},
1415
selected={true},
1516
}
1617

@@ -25,6 +26,7 @@ @INPROCEEDINGS{8955253
2526
month={Nov},
2627
url={https://ieeexplore.ieee.org/document/8955253},
2728
html={https://ieeexplore.ieee.org/document/8955253},
29+
dimensions={true},
2830
selected={true},
2931
}
3032

@@ -38,8 +40,9 @@ @INPROCEEDINGS{9781020
3840
pages={587-594},
3941
keywords={Training;Runtime;Smart cities;Bandwidth;Predictive models;Benchmark testing;Supercomputers;Parallel I/O;machine learning;active learning;performance prediction;tuning},
4042
doi={10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00100},
43+
dimensions={true},
4144
selected={true},
4245
abstract={Parallel I/O tuning is useful for scientific applications that read and write huge amounts of data. I/O performance depends on multiple tunable parameters such as the stripe size, stripe count, the collective I/O buffer size, and the number of collective I/O aggregators. The search space being large, it is cumbersome to tune the I/O parameters for every system to achieve optimal results. We propose active learning-based execution and prediction-based tuning models. These recommend a good set of I/O parameter values for an application on a given system. These models use optimization to find the parameter values; the objective is to minimize I/O time. The models allow to focus on improvement of read and/or write performance, and separate tuning of reads and writes. We evaluated our models using I/O kernels of scientific applications (S3D-IO, BT-IO and GenericIO) and the highly configurable IOR benchmark on an Intel-based supercomputer, HPC2010. We achieved an increase in I/O bandwidth of up to 8x over the default parameters, when both read and write are optimized together, and up to 20x in read bandwidths when optimized separately.},
4346
url={https://ieeexplore.ieee.org/abstract/document/9781020},
4447
html={https://ieeexplore.ieee.org/abstract/document/9781020}
45-
}
48+
}

0 commit comments

Comments
 (0)