diff --git a/docling_core/transforms/serializer/base.py b/docling_core/transforms/serializer/base.py
index 67d0a727..8d29aa0b 100644
--- a/docling_core/transforms/serializer/base.py
+++ b/docling_core/transforms/serializer/base.py
@@ -317,7 +317,7 @@ def _humanize_text(self, text: str, title: bool = False) -> str:
return tmp.title() if title else tmp.capitalize()
-@deprecated("Use BaseMetaSerializer() instead.")
+# deprecated: use BaseMetaSerializer instead
class BaseAnnotationSerializer(ABC):
"""Base class for annotation serializers."""
diff --git a/docling_core/transforms/serializer/common.py b/docling_core/transforms/serializer/common.py
index 4720ada0..33f0a10e 100644
--- a/docling_core/transforms/serializer/common.py
+++ b/docling_core/transforms/serializer/common.py
@@ -7,6 +7,7 @@
import logging
import re
import sys
+import warnings
from abc import abstractmethod
from functools import cached_property
from pathlib import Path
@@ -206,7 +207,9 @@ class CommonParams(BaseModel):
include_hyperlinks: bool = True
caption_delim: str = " "
use_legacy_annotations: bool = Field(
- default=False, description="Use legacy annotation serialization."
+ default=False,
+ description="Use legacy annotation serialization.",
+ deprecated="Legacy annotations considered only when meta not present.",
)
allowed_meta_names: Optional[set[str]] = Field(
default=None,
@@ -336,7 +339,7 @@ def serialize(
my_item = item or self.doc.body
if my_item == self.doc.body:
- if my_item.meta and not my_params.use_legacy_annotations:
+ if my_item.meta:
meta_part = self.serialize_meta(item=my_item, **my_kwargs)
if meta_part.text:
parts.append(meta_part)
@@ -355,7 +358,7 @@ def serialize(
my_visited.add(my_item.self_ref)
- if my_item.meta and not my_params.use_legacy_annotations:
+ if my_item.meta:
meta_part = self.serialize_meta(item=my_item, **my_kwargs)
if meta_part.text:
parts.append(meta_part)
@@ -655,3 +658,30 @@ def _get_page_breaks(self, text: str) -> Iterable[Tuple[str, int, int]]:
prev_page_nr = int(match.group(1))
next_page_nr = int(match.group(2))
yield (full_match, prev_page_nr, next_page_nr)
+
+
+def _should_use_legacy_annotations(
+ *,
+ params: CommonParams,
+ item: Union[PictureItem, TableItem],
+ kind: Optional[str] = None,
+) -> bool:
+ if item.meta:
+ return False
+ with warnings.catch_warnings(record=True) as caught_warnings:
+ warnings.simplefilter("ignore", DeprecationWarning)
+ if (
+ incl_attr := getattr(params, "include_annotations", None)
+ ) is not None and not incl_attr:
+ return False
+ use_legacy = bool(
+ [
+ ann
+ for ann in item.annotations
+ if ((ann.kind == kind) if kind is not None else True)
+ ]
+ )
+ if use_legacy:
+ for w in caught_warnings:
+ warnings.warn(w.message, w.category)
+ return use_legacy
diff --git a/docling_core/transforms/serializer/doctags.py b/docling_core/transforms/serializer/doctags.py
index 0195cd8e..0deaa991 100644
--- a/docling_core/transforms/serializer/doctags.py
+++ b/docling_core/transforms/serializer/doctags.py
@@ -23,6 +23,7 @@
from docling_core.transforms.serializer.common import (
CommonParams,
DocSerializer,
+ _should_use_legacy_annotations,
create_ser_result,
)
from docling_core.types.doc.base import BoundingBox
@@ -236,18 +237,25 @@ def serialize(
# handle classification data
predicted_class: Optional[str] = None
- if item.meta and item.meta.classification:
- predicted_class = (
- item.meta.classification.get_main_prediction().class_name
- )
- elif (
- classifications := [
+ if item.meta:
+ if item.meta.classification:
+ predicted_class = (
+ item.meta.classification.get_main_prediction().class_name
+ )
+ elif _should_use_legacy_annotations(
+ params=params,
+ item=item,
+ kind=PictureClassificationData.model_fields["kind"].default,
+ ):
+ if classifications := [
ann
for ann in item.annotations
if isinstance(ann, PictureClassificationData)
- ]
- ) and classifications[0].predicted_classes:
- predicted_class = classifications[0].predicted_classes[0].class_name
+ ]:
+ if classifications[0].predicted_classes:
+ predicted_class = (
+ classifications[0].predicted_classes[0].class_name
+ )
if predicted_class:
body += DocumentToken.get_picture_classification_token(predicted_class)
if predicted_class in [
@@ -263,25 +271,39 @@ def serialize(
# handle molecule data
smi: Optional[str] = None
- if item.meta and item.meta.molecule:
- smi = item.meta.molecule.smi
- elif smiles_annotations := [
- ann for ann in item.annotations if isinstance(ann, PictureMoleculeData)
- ]:
- smi = smiles_annotations[0].smi
+ if item.meta:
+ if item.meta.molecule:
+ smi = item.meta.molecule.smi
+ elif _should_use_legacy_annotations(
+ params=params,
+ item=item,
+ kind=PictureMoleculeData.model_fields["kind"].default,
+ ):
+ if smiles_annotations := [
+ ann
+ for ann in item.annotations
+ if isinstance(ann, PictureMoleculeData)
+ ]:
+ smi = smiles_annotations[0].smi
if smi:
body += _wrap(text=smi, wrap_tag=DocumentToken.SMILES.value)
# handle tabular chart data
chart_data: Optional[TableData] = None
- if item.meta and item.meta.tabular_chart:
- chart_data = item.meta.tabular_chart.chart_data
- elif tabular_chart_annotations := [
- ann
- for ann in item.annotations
- if isinstance(ann, PictureTabularChartData)
- ]:
- chart_data = tabular_chart_annotations[0].chart_data
+ if item.meta:
+ if item.meta.tabular_chart:
+ chart_data = item.meta.tabular_chart.chart_data
+ elif _should_use_legacy_annotations(
+ params=params,
+ item=item,
+ kind=PictureTabularChartData.model_fields["kind"].default,
+ ):
+ if tabular_chart_annotations := [
+ ann
+ for ann in item.annotations
+ if isinstance(ann, PictureTabularChartData)
+ ]:
+ chart_data = tabular_chart_annotations[0].chart_data
if chart_data and chart_data.table_cells:
temp_doc = DoclingDocument(name="temp")
temp_table = temp_doc.add_table(data=chart_data)
diff --git a/docling_core/transforms/serializer/html.py b/docling_core/transforms/serializer/html.py
index 71bd798e..1a02d48c 100644
--- a/docling_core/transforms/serializer/html.py
+++ b/docling_core/transforms/serializer/html.py
@@ -38,6 +38,7 @@
CommonParams,
DocSerializer,
_get_annotation_text,
+ _should_use_legacy_annotations,
create_ser_result,
)
from docling_core.transforms.serializer.html_styles import (
@@ -496,7 +497,11 @@ def get_img_row(imgb64: str, ind: int) -> str:
if img_text:
res_parts.append(create_ser_result(text=img_text, span_source=item))
- if params.enable_chart_tables:
+ if params.enable_chart_tables and _should_use_legacy_annotations(
+ params=params,
+ item=item,
+ kind=PictureTabularChartData.model_fields["kind"].default,
+ ):
# Check if picture has attached PictureTabularChartData
tabular_chart_annotations = [
ann
@@ -867,8 +872,13 @@ def _serialize_meta_field(self, meta: BaseMeta, name: str) -> Optional[str]:
elif isinstance(field_val, MoleculeMetaField):
txt = field_val.smi
elif isinstance(field_val, TabularChartMetaField):
- # suppressing tabular chart serialization
- return None
+ temp_doc = DoclingDocument(name="temp")
+ temp_table = temp_doc.add_table(data=field_val.chart_data)
+ table_content = temp_table.export_to_html(temp_doc).strip()
+ if table_content:
+ txt = table_content
+ else:
+ return None
elif tmp := str(field_val or ""):
txt = tmp
else:
@@ -1119,17 +1129,16 @@ def serialize_captions(
results.append(cap_ser_res)
if (
- params.use_legacy_annotations
- and params.include_annotations
- and item.self_ref not in excluded_refs
+ item.self_ref not in excluded_refs
+ and isinstance(item, (PictureItem, TableItem))
+ and _should_use_legacy_annotations(params=params, item=item)
):
- if isinstance(item, (PictureItem, TableItem)):
- ann_res = self.serialize_annotations(
- item=item,
- **kwargs,
- )
- if ann_res.text:
- results.append(ann_res)
+ ann_res = self.serialize_annotations(
+ item=item,
+ **kwargs,
+ )
+ if ann_res.text:
+ results.append(ann_res)
text_res = params.caption_delim.join([r.text for r in results])
if text_res:
diff --git a/docling_core/transforms/serializer/markdown.py b/docling_core/transforms/serializer/markdown.py
index 6292761d..c9660366 100644
--- a/docling_core/transforms/serializer/markdown.py
+++ b/docling_core/transforms/serializer/markdown.py
@@ -33,6 +33,7 @@
CommonParams,
DocSerializer,
_get_annotation_text,
+ _should_use_legacy_annotations,
create_ser_result,
)
from docling_core.types.doc.base import ImageRefMode
@@ -72,23 +73,6 @@
)
-def _get_annotation_ser_result(
- ann_kind: str, ann_text: str, mark_annotation: bool, doc_item: DocItem
-):
- return create_ser_result(
- text=(
- (
- f''
- f"{ann_text}"
- f""
- )
- if mark_annotation
- else ann_text
- ),
- span_source=doc_item,
- )
-
-
class OrigListItemMarkerMode(str, Enum):
"""Display mode for original list item marker."""
@@ -315,8 +299,13 @@ def _serialize_meta_field(
elif isinstance(field_val, MoleculeMetaField):
txt = field_val.smi
elif isinstance(field_val, TabularChartMetaField):
- # suppressing tabular chart serialization
- return None
+ temp_doc = DoclingDocument(name="temp")
+ temp_table = temp_doc.add_table(data=field_val.chart_data)
+ table_content = temp_table.export_to_markdown(temp_doc).strip()
+ if table_content:
+ txt = table_content
+ else:
+ return None
elif tmp := str(field_val or ""):
txt = tmp
else:
@@ -397,7 +386,7 @@ def serialize(
if item.self_ref not in doc_serializer.get_excluded_refs(**kwargs):
- if params.use_legacy_annotations and params.include_annotations:
+ if _should_use_legacy_annotations(params=params, item=item):
ann_res = doc_serializer.serialize_annotations(
item=item,
@@ -466,7 +455,7 @@ def serialize(
res_parts.append(cap_res)
if item.self_ref not in doc_serializer.get_excluded_refs(**kwargs):
- if params.use_legacy_annotations and params.include_annotations:
+ if _should_use_legacy_annotations(params=params, item=item):
ann_res = doc_serializer.serialize_annotations(
item=item,
**kwargs,
@@ -483,7 +472,11 @@ def serialize(
if img_res.text:
res_parts.append(img_res)
- if params.enable_chart_tables:
+ if params.enable_chart_tables and _should_use_legacy_annotations(
+ params=params,
+ item=item,
+ kind=PictureTabularChartData.model_fields["kind"].default,
+ ):
# Check if picture has attached PictureTabularChartData
tabular_chart_annotations = [
ann
diff --git a/docling_core/types/doc/document.py b/docling_core/types/doc/document.py
index 626a9734..f2ea223c 100644
--- a/docling_core/types/doc/document.py
+++ b/docling_core/types/doc/document.py
@@ -4715,7 +4715,7 @@ def save_as_markdown(
include_annotations: bool = True,
*,
mark_meta: bool = False,
- use_legacy_annotations: bool = False,
+ use_legacy_annotations: Optional[bool] = None, # deprecated
):
"""Save to markdown."""
if isinstance(filename, str):
@@ -4772,7 +4772,7 @@ def export_to_markdown( # noqa: C901
include_annotations: bool = True,
mark_annotations: bool = False,
*,
- use_legacy_annotations: bool = False,
+ use_legacy_annotations: Optional[bool] = None, # deprecated
allowed_meta_names: Optional[set[str]] = None,
blocked_meta_names: Optional[set[str]] = None,
mark_meta: bool = False,
@@ -4815,17 +4815,15 @@ def export_to_markdown( # noqa: C901
:param page_break_placeholder: The placeholder to include for marking page
breaks. None means no page break placeholder will be used.
:type page_break_placeholder: Optional[str] = None
- :param include_annotations: bool: Whether to include annotations in the export.
- (Default value = True).
+ :param include_annotations: bool: Whether to include annotations in the export; only considered if item does not
+ have meta. (Default value = True).
:type include_annotations: bool = True
- :param mark_annotations: bool: Whether to mark annotations in the export; only
- relevant if include_annotations is True. (Default value = False).
+ :param mark_annotations: bool: Whether to mark annotations in the export; only considered if item does not have
+ meta. (Default value = False).
:type mark_annotations: bool = False
- :param use_legacy_annotations: bool: Whether to use legacy annotation serialization.
- (Default value = False).
- :type use_legacy_annotations: bool = False
- :param mark_meta: bool: Whether to mark meta in the export; only
- relevant if use_legacy_annotations is False. (Default value = False).
+ :param use_legacy_annotations: bool: Deprecated; legacy annotations considered only when meta not present.
+ :type use_legacy_annotations: Optional[bool] = None
+ :param mark_meta: bool: Whether to mark meta in the export
:type mark_meta: bool = False
:returns: The exported Markdown representation.
:rtype: str
@@ -4845,6 +4843,13 @@ def export_to_markdown( # noqa: C901
if included_content_layers is not None
else DEFAULT_CONTENT_LAYERS
)
+
+ if use_legacy_annotations is not None:
+ warnings.warn(
+ "Parameter `use_legacy_annotations` has been deprecated and will be ignored.",
+ DeprecationWarning,
+ )
+
serializer = MarkdownDocSerializer(
doc=self,
params=MarkdownParams(
@@ -4863,7 +4868,6 @@ def export_to_markdown( # noqa: C901
page_break_placeholder=page_break_placeholder,
mark_meta=mark_meta,
include_annotations=include_annotations,
- use_legacy_annotations=use_legacy_annotations,
allowed_meta_names=allowed_meta_names,
blocked_meta_names=blocked_meta_names or set(),
mark_annotations=mark_annotations,
@@ -5421,25 +5425,51 @@ def _add_text(
)
pic.captions.append(caption.get_ref())
pic_title = "picture"
+
+ pic_classification = None
if chart_type is not None:
- pic.annotations.append(
- PictureClassificationData(
- provenance="load_from_doctags",
- predicted_classes=[
- # chart_type
- PictureClassificationClass(
- class_name=chart_type, confidence=1.0
- )
- ],
- )
+ # pic.annotations.append(
+ # PictureClassificationData(
+ # provenance="load_from_doctags",
+ # predicted_classes=[
+ # # chart_type
+ # PictureClassificationClass(
+ # class_name=chart_type, confidence=1.0
+ # )
+ # ],
+ # )
+ # )
+ pic_classification = PictureClassificationMetaField(
+ predictions=[
+ PictureClassificationPrediction(
+ class_name=chart_type,
+ confidence=1.0,
+ created_by="load_from_doctags",
+ )
+ ]
)
pic_title = chart_type
+
+ pic_tabular_chart = None
if table_data is not None:
- # Add chart data as PictureTabularChartData
- pd = PictureTabularChartData(
- chart_data=table_data, title=pic_title
+ # # Add chart data as PictureTabularChartData
+ # pd = PictureTabularChartData(
+ # chart_data=table_data, title=pic_title
+ # )
+ # pic.annotations.append(pd)
+ pic_tabular_chart = TabularChartMetaField(
+ title=pic_title,
+ chart_data=table_data,
+ )
+
+ if (
+ pic_classification is not None
+ or pic_tabular_chart is not None
+ ):
+ pic.meta = PictureMeta(
+ classification=pic_classification,
+ tabular_chart=pic_tabular_chart,
)
- pic.annotations.append(pd)
else:
if bbox:
# In case we don't have access to an binary of an image
@@ -6090,7 +6120,10 @@ def concatenate(cls, docs: Sequence["DoclingDocument"]) -> "DoclingDocument":
def _validate_rules(self):
def validate_furniture(doc: DoclingDocument):
- if doc.furniture.children:
+ with warnings.catch_warnings():
+ warnings.simplefilter("ignore", category=DeprecationWarning)
+ has_furniture_children = len(doc.furniture.children) > 0
+ if has_furniture_children:
raise ValueError(
f"Deprecated furniture node {doc.furniture.self_ref} has children"
)
diff --git a/test/data/doc/2408.09869v3_enriched_p1_include_annotations_false.gt.md b/test/data/doc/2408.09869v3_enriched_p1_include_annotations_false.gt.md
deleted file mode 100644
index dd345623..00000000
--- a/test/data/doc/2408.09869v3_enriched_p1_include_annotations_false.gt.md
+++ /dev/null
@@ -1,44 +0,0 @@
-# Docling Technical Report
-
-
-
-Version 1.0
-
-Christoph Auer Maksym Lysak Ahmed Nassar Michele Dolfi Nikolaos Livathinos Panos Vagenas Cesar Berrospi Ramis Matteo Omenetti Fabian Lindlbauer Kasper Dinkla Lokesh Mishra Yusik Kim Shubham Gupta Rafael Teixeira de Lima Valery Weber Lucas Morin Ingmar Meijer Viktor Kuropiatnyk Peter W. J. Staar
-
-AI4K Group, IBM Research R¨ uschlikon, Switzerland
-
-## Abstract
-
-This technical report introduces Docling , an easy to use, self-contained, MITlicensed open-source package for PDF document conversion. It is powered by state-of-the-art specialized AI models for layout analysis (DocLayNet) and table structure recognition (TableFormer), and runs efficiently on commodity hardware in a small resource budget. The code interface allows for easy extensibility and addition of new features and models.
-
-## 1 Introduction
-
-Converting PDF documents back into a machine-processable format has been a major challenge for decades due to their huge variability in formats, weak standardization and printing-optimized characteristic, which discards most structural features and metadata. With the advent of LLMs and popular application patterns such as retrieval-augmented generation (RAG), leveraging the rich content embedded in PDFs has become ever more relevant. In the past decade, several powerful document understanding solutions have emerged on the market, most of which are commercial software, cloud offerings [3] and most recently, multi-modal vision-language models. As of today, only a handful of open-source tools cover PDF conversion, leaving a significant feature and quality gap to proprietary solutions.
-
-With Docling , we open-source a very capable and efficient document conversion tool which builds on the powerful, specialized AI models and datasets for layout analysis and table structure recognition we developed and presented in the recent past [12, 13, 9]. Docling is designed as a simple, self-contained python library with permissive license, running entirely locally on commodity hardware. Its code architecture allows for easy extensibility and addition of new features and models.
-
-torch runtimes backing the Docling pipeline. We will deliver updates on this topic at in a future version of this report.
-
-Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution (TTS), computed throughput in pages per second, and the peak memory used (resident set size) for both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads.
-
-| CPU | Thread budget | native backend | native backend | native backend | pypdfium backend | pypdfium backend | pypdfium backend |
-|----------------------------------|-----------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|
-| | | TTS | Pages/s | Mem | TTS | Pages/s | Mem |
-| Apple M3 Max | 4 | 177 s 167 s | 1.27 1.34 | 6.20 GB | 103 s 92 s | 2.18 2.45 | 2.56 GB |
-| (16 cores) Intel(R) Xeon E5-2690 | 16 4 16 | 375 s 244 s | 0.60 0.92 | 6.16 GB | 239 s 143 s | 0.94 1.57 | 2.42 GB |
-
-## 5 Applications
-
-Thanks to the high-quality, richly structured document conversion achieved by Docling, its output qualifies for numerous downstream applications. For example, Docling can provide a base for detailed enterprise document search, passage retrieval or classification use-cases, or support knowledge extraction pipelines, allowing specific treatment of different structures in the document, such as tables, figures, section structure or references. For popular generative AI application patterns, such as retrieval-augmented generation (RAG), we provide quackling , an open-source package which capitalizes on Docling's feature-rich document output to enable document-native optimized vector embedding and chunking. It plugs in seamlessly with LLM frameworks such as LlamaIndex [8]. Since Docling is fast, stable and cheap to run, it also makes for an excellent choice to build document-derived datasets. With its powerful table structure recognition, it provides significant benefit to automated knowledge-base construction [11, 10]. Docling is also integrated within the open IBM data prep kit [6], which implements scalable data transforms to build large-scale multi-modal training datasets.
-
-## 6 Future work and contributions
-
-Docling is designed to allow easy extension of the model library and pipelines. In the future, we plan to extend Docling with several more models, such as a figure-classifier model, an equationrecognition model, a code-recognition model and more. This will help improve the quality of conversion for specific types of content, as well as augment extracted document metadata with additional information. Further investment into testing and optimizing GPU acceleration as well as improving the Docling-native PDF backend are on our roadmap, too.
-
-We encourage everyone to propose or implement additional features and models, and will gladly take your inputs and contributions under review . The codebase of Docling is open for use and contribution, under the MIT license agreement and in alignment with our contributing guidelines included in the Docling repository. If you use Docling in your projects, please consider citing this technical report.
-
-## References
-
-- [1] J. AI. Easyocr: Ready-to-use ocr with 80+ supported languages. https://github.com/ JaidedAI/EasyOCR , 2024. Version: 1.7.0.
-- [2] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chourdia, W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng, J. Gong, M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. Luk, B. Maher, Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk, M. Suo, P. Tillet, E. Wang, X. Wang, W. Wen, S. Zhang, X. Zhao, K. Zhou, R. Zou, A. Mathews, G. Chanan, P. Wu, and S. Chintala. Pytorch 2: Faster
diff --git a/test/data/doc/2408.09869v3_enriched_p1_mark_annotations_false.gt.md b/test/data/doc/2408.09869v3_enriched_p1_mark_meta_false.gt.md
similarity index 98%
rename from test/data/doc/2408.09869v3_enriched_p1_mark_annotations_false.gt.md
rename to test/data/doc/2408.09869v3_enriched_p1_mark_meta_false.gt.md
index 61f88f35..fe55c055 100644
--- a/test/data/doc/2408.09869v3_enriched_p1_mark_annotations_false.gt.md
+++ b/test/data/doc/2408.09869v3_enriched_p1_mark_meta_false.gt.md
@@ -22,8 +22,7 @@ With Docling , we open-source a very capable and efficient document conversion t
torch runtimes backing the Docling pipeline. We will deliver updates on this topic at in a future version of this report.
-summary: Typical Docling setup runtime characterization.
-type: performance data
+{'summary': 'Typical Docling setup runtime characterization.', 'type': 'performance data'}
Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution (TTS), computed throughput in pages per second, and the peak memory used (resident set size) for both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads.
diff --git a/test/data/doc/2408.09869v3_enriched_p1_mark_meta_true.gt.md b/test/data/doc/2408.09869v3_enriched_p1_mark_meta_true.gt.md
index 3f8a9266..14a091c6 100644
--- a/test/data/doc/2408.09869v3_enriched_p1_mark_meta_true.gt.md
+++ b/test/data/doc/2408.09869v3_enriched_p1_mark_meta_true.gt.md
@@ -24,9 +24,6 @@ torch runtimes backing the Docling pipeline. We will deliver updates on this top
[Docling Legacy Misc] {'summary': 'Typical Docling setup runtime characterization.', 'type': 'performance data'}
-summary: Typical Docling setup runtime characterization.
-type: performance data
-
Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution (TTS), computed throughput in pages per second, and the peak memory used (resident set size) for both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads.
| CPU | Thread budget | native backend | native backend | native backend | pypdfium backend | pypdfium backend | pypdfium backend |
diff --git a/test/data/doc/2408.09869v3_enriched_p1_use_legacy_annotations_true_mark_annotations_true.gt.md b/test/data/doc/2408.09869v3_enriched_p1_use_legacy_annotations_true_mark_annotations_true.gt.md
deleted file mode 100644
index c08732f2..00000000
--- a/test/data/doc/2408.09869v3_enriched_p1_use_legacy_annotations_true_mark_annotations_true.gt.md
+++ /dev/null
@@ -1,49 +0,0 @@
-# Docling Technical Report
-
-In this image we can see a cartoon image of a duck holding a paper.
-
-
-
-Version 1.0
-
-Christoph Auer Maksym Lysak Ahmed Nassar Michele Dolfi Nikolaos Livathinos Panos Vagenas Cesar Berrospi Ramis Matteo Omenetti Fabian Lindlbauer Kasper Dinkla Lokesh Mishra Yusik Kim Shubham Gupta Rafael Teixeira de Lima Valery Weber Lucas Morin Ingmar Meijer Viktor Kuropiatnyk Peter W. J. Staar
-
-AI4K Group, IBM Research R¨ uschlikon, Switzerland
-
-## Abstract
-
-This technical report introduces Docling , an easy to use, self-contained, MITlicensed open-source package for PDF document conversion. It is powered by state-of-the-art specialized AI models for layout analysis (DocLayNet) and table structure recognition (TableFormer), and runs efficiently on commodity hardware in a small resource budget. The code interface allows for easy extensibility and addition of new features and models.
-
-## 1 Introduction
-
-Converting PDF documents back into a machine-processable format has been a major challenge for decades due to their huge variability in formats, weak standardization and printing-optimized characteristic, which discards most structural features and metadata. With the advent of LLMs and popular application patterns such as retrieval-augmented generation (RAG), leveraging the rich content embedded in PDFs has become ever more relevant. In the past decade, several powerful document understanding solutions have emerged on the market, most of which are commercial software, cloud offerings [3] and most recently, multi-modal vision-language models. As of today, only a handful of open-source tools cover PDF conversion, leaving a significant feature and quality gap to proprietary solutions.
-
-With Docling , we open-source a very capable and efficient document conversion tool which builds on the powerful, specialized AI models and datasets for layout analysis and table structure recognition we developed and presented in the recent past [12, 13, 9]. Docling is designed as a simple, self-contained python library with permissive license, running entirely locally on commodity hardware. Its code architecture allows for easy extensibility and addition of new features and models.
-
-torch runtimes backing the Docling pipeline. We will deliver updates on this topic at in a future version of this report.
-
-summary: Typical Docling setup runtime characterization.
-type: performance data
-
-Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution (TTS), computed throughput in pages per second, and the peak memory used (resident set size) for both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads.
-
-| CPU | Thread budget | native backend | native backend | native backend | pypdfium backend | pypdfium backend | pypdfium backend |
-|----------------------------------|-----------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|
-| | | TTS | Pages/s | Mem | TTS | Pages/s | Mem |
-| Apple M3 Max | 4 | 177 s 167 s | 1.27 1.34 | 6.20 GB | 103 s 92 s | 2.18 2.45 | 2.56 GB |
-| (16 cores) Intel(R) Xeon E5-2690 | 16 4 16 | 375 s 244 s | 0.60 0.92 | 6.16 GB | 239 s 143 s | 0.94 1.57 | 2.42 GB |
-
-## 5 Applications
-
-Thanks to the high-quality, richly structured document conversion achieved by Docling, its output qualifies for numerous downstream applications. For example, Docling can provide a base for detailed enterprise document search, passage retrieval or classification use-cases, or support knowledge extraction pipelines, allowing specific treatment of different structures in the document, such as tables, figures, section structure or references. For popular generative AI application patterns, such as retrieval-augmented generation (RAG), we provide quackling , an open-source package which capitalizes on Docling's feature-rich document output to enable document-native optimized vector embedding and chunking. It plugs in seamlessly with LLM frameworks such as LlamaIndex [8]. Since Docling is fast, stable and cheap to run, it also makes for an excellent choice to build document-derived datasets. With its powerful table structure recognition, it provides significant benefit to automated knowledge-base construction [11, 10]. Docling is also integrated within the open IBM data prep kit [6], which implements scalable data transforms to build large-scale multi-modal training datasets.
-
-## 6 Future work and contributions
-
-Docling is designed to allow easy extension of the model library and pipelines. In the future, we plan to extend Docling with several more models, such as a figure-classifier model, an equationrecognition model, a code-recognition model and more. This will help improve the quality of conversion for specific types of content, as well as augment extracted document metadata with additional information. Further investment into testing and optimizing GPU acceleration as well as improving the Docling-native PDF backend are on our roadmap, too.
-
-We encourage everyone to propose or implement additional features and models, and will gladly take your inputs and contributions under review . The codebase of Docling is open for use and contribution, under the MIT license agreement and in alignment with our contributing guidelines included in the Docling repository. If you use Docling in your projects, please consider citing this technical report.
-
-## References
-
-- [1] J. AI. Easyocr: Ready-to-use ocr with 80+ supported languages. https://github.com/ JaidedAI/EasyOCR , 2024. Version: 1.7.0.
-- [2] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chourdia, W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng, J. Gong, M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. Luk, B. Maher, Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk, M. Suo, P. Tillet, E. Wang, X. Wang, W. Wen, S. Zhang, X. Zhao, K. Zhou, R. Zou, A. Mathews, G. Chanan, P. Wu, and S. Chintala. Pytorch 2: Faster
diff --git a/test/data/doc/barchart.dt.out.json b/test/data/doc/barchart.dt.out.json
new file mode 100644
index 00000000..a761f2d1
--- /dev/null
+++ b/test/data/doc/barchart.dt.out.json
@@ -0,0 +1,699 @@
+{
+ "schema_name": "DoclingDocument",
+ "version": "1.8.0",
+ "name": "Document",
+ "furniture": {
+ "self_ref": "#/furniture",
+ "children": [],
+ "content_layer": "furniture",
+ "name": "_root_",
+ "label": "unspecified"
+ },
+ "body": {
+ "self_ref": "#/body",
+ "children": [
+ {
+ "$ref": "#/texts/0"
+ },
+ {
+ "$ref": "#/pictures/0"
+ }
+ ],
+ "content_layer": "body",
+ "name": "_root_",
+ "label": "unspecified"
+ },
+ "groups": [],
+ "texts": [
+ {
+ "self_ref": "#/texts/0",
+ "parent": {
+ "$ref": "#/body"
+ },
+ "children": [],
+ "content_layer": "furniture",
+ "label": "page_header",
+ "prov": [
+ {
+ "page_no": 1,
+ "bbox": {
+ "l": 150.80399999999997,
+ "t": 42.980000000000004,
+ "r": 460.908,
+ "b": 61.4,
+ "coord_origin": "TOPLEFT"
+ },
+ "charspan": [
+ 0,
+ 38
+ ]
+ }
+ ],
+ "orig": "Probability, Combinatorics and Control",
+ "text": "Probability, Combinatorics and Control"
+ }
+ ],
+ "pictures": [
+ {
+ "self_ref": "#/pictures/0",
+ "parent": {
+ "$ref": "#/body"
+ },
+ "children": [],
+ "content_layer": "body",
+ "meta": {
+ "classification": {
+ "predictions": [
+ {
+ "confidence": 1.0,
+ "created_by": "load_from_doctags",
+ "class_name": "bar_chart"
+ }
+ ]
+ },
+ "tabular_chart": {
+ "title": "bar_chart",
+ "chart_data": {
+ "table_cells": [
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 0,
+ "end_row_offset_idx": 1,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "Number of impellers",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 0,
+ "end_row_offset_idx": 1,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "single-frequency",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 0,
+ "end_row_offset_idx": 1,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "multi-frequency",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 1,
+ "end_row_offset_idx": 2,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "1",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 1,
+ "end_row_offset_idx": 2,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.06",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 1,
+ "end_row_offset_idx": 2,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.16",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 2,
+ "end_row_offset_idx": 3,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "2",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 2,
+ "end_row_offset_idx": 3,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.12",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 2,
+ "end_row_offset_idx": 3,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.26",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 3,
+ "end_row_offset_idx": 4,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "3",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 3,
+ "end_row_offset_idx": 4,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.16",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 3,
+ "end_row_offset_idx": 4,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.27",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 4,
+ "end_row_offset_idx": 5,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "4",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 4,
+ "end_row_offset_idx": 5,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.14",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 4,
+ "end_row_offset_idx": 5,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.26",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 5,
+ "end_row_offset_idx": 6,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "5",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 5,
+ "end_row_offset_idx": 6,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.16",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 5,
+ "end_row_offset_idx": 6,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.25",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 6,
+ "end_row_offset_idx": 7,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "6",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 6,
+ "end_row_offset_idx": 7,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.24",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 6,
+ "end_row_offset_idx": 7,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.24",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ }
+ ],
+ "num_rows": 7,
+ "num_cols": 3,
+ "grid": [
+ [
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 0,
+ "end_row_offset_idx": 1,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "Number of impellers",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 0,
+ "end_row_offset_idx": 1,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "single-frequency",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 0,
+ "end_row_offset_idx": 1,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "multi-frequency",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ }
+ ],
+ [
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 1,
+ "end_row_offset_idx": 2,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "1",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 1,
+ "end_row_offset_idx": 2,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.06",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 1,
+ "end_row_offset_idx": 2,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.16",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ }
+ ],
+ [
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 2,
+ "end_row_offset_idx": 3,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "2",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 2,
+ "end_row_offset_idx": 3,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.12",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 2,
+ "end_row_offset_idx": 3,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.26",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ }
+ ],
+ [
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 3,
+ "end_row_offset_idx": 4,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "3",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 3,
+ "end_row_offset_idx": 4,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.16",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 3,
+ "end_row_offset_idx": 4,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.27",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ }
+ ],
+ [
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 4,
+ "end_row_offset_idx": 5,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "4",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 4,
+ "end_row_offset_idx": 5,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.14",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 4,
+ "end_row_offset_idx": 5,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.26",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ }
+ ],
+ [
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 5,
+ "end_row_offset_idx": 6,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "5",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 5,
+ "end_row_offset_idx": 6,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.16",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 5,
+ "end_row_offset_idx": 6,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.25",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ }
+ ],
+ [
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 6,
+ "end_row_offset_idx": 7,
+ "start_col_offset_idx": 0,
+ "end_col_offset_idx": 1,
+ "text": "6",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 6,
+ "end_row_offset_idx": 7,
+ "start_col_offset_idx": 1,
+ "end_col_offset_idx": 2,
+ "text": "0.24",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ },
+ {
+ "row_span": 1,
+ "col_span": 1,
+ "start_row_offset_idx": 6,
+ "end_row_offset_idx": 7,
+ "start_col_offset_idx": 2,
+ "end_col_offset_idx": 3,
+ "text": "0.24",
+ "column_header": false,
+ "row_header": false,
+ "row_section": false,
+ "fillable": false
+ }
+ ]
+ ]
+ }
+ }
+ },
+ "label": "picture",
+ "prov": [
+ {
+ "page_no": 1,
+ "bbox": {
+ "l": 216.648,
+ "t": 113.58999999999999,
+ "r": 832.6080000000001,
+ "b": 454.35999999999996,
+ "coord_origin": "TOPLEFT"
+ },
+ "charspan": [
+ 0,
+ 0
+ ]
+ }
+ ],
+ "captions": [],
+ "references": [],
+ "footnotes": [],
+ "image": {
+ "mimetype": "image/png",
+ "dpi": 72,
+ "size": {
+ "width": 616.0,
+ "height": 341.0
+ },
+ "uri": ""
+ },
+ "annotations": []
+ }
+ ],
+ "tables": [],
+ "key_value_items": [],
+ "form_items": [],
+ "pages": {
+ "1": {
+ "size": {
+ "width": 1062.0,
+ "height": 1535.0
+ },
+ "image": {
+ "mimetype": "image/png",
+ "dpi": 72,
+ "size": {
+ "width": 1062.0,
+ "height": 1535.0
+ },
+ "uri": ""
+ },
+ "page_no": 1
+ }
+ }
+}
diff --git a/test/data/doc/barchart.gt.html b/test/data/doc/barchart.gt.html
index 05cbb81f..75166c7b 100644
--- a/test/data/doc/barchart.gt.html
+++ b/test/data/doc/barchart.gt.html
@@ -125,7 +125,7 @@
Bar chart
-
| Number of impellers | single-frequency | multi-frequency |
| 1 | 0.06 | 0.16 |
| 2 | 0.12 | 0.26 |
| 3 | 0.16 | 0.27 |
| 4 | 0.14 | 0.26 |
| 5 | 0.16 | 0.25 |
| 6 | 0.24 | 0.24 |
+
| Number of impellers | single-frequency | multi-frequency |
| 1 | 0.06 | 0.16 |
| 2 | 0.12 | 0.26 |
| 3 | 0.16 | 0.27 |
| 4 | 0.14 | 0.26 |
| 5 | 0.16 | 0.25 |
| 6 | 0.24 | 0.24 |