|
| 1 | +# %% [markdown] |
| 2 | +# Detect and obfuscate PII using a Hugging Face NER model. |
| 3 | +# |
| 4 | +# What this example does |
| 5 | +# - Converts a PDF and saves original Markdown with embedded images. |
| 6 | +# - Runs a HF token-classification pipeline (NER) to detect PII-like entities. |
| 7 | +# - Obfuscates occurrences in TextItem and TableItem by stable, type-based IDs. |
| 8 | +# |
| 9 | +# Prerequisites |
| 10 | +# - Install Docling. Install Transformers: `pip install transformers`. |
| 11 | +# - Optional (advanced): Install GLiNER for richer PII labels: |
| 12 | +# `pip install gliner` |
| 13 | +# If needed for CPU-only envs: |
| 14 | +# `pip install torch --extra-index-url https://download.pytorch.org/whl/cpu` |
| 15 | +# - Optionally, set `HF_MODEL` to a different NER/PII model. |
| 16 | +# |
| 17 | +# How to run |
| 18 | +# - From the repo root: `python docs/examples/pii_obfuscate.py`. |
| 19 | +# - To use GLiNER instead of HF pipeline: |
| 20 | +# python docs/examples/pii_obfuscate.py --engine gliner |
| 21 | +# or set env var `PII_ENGINE=gliner`. |
| 22 | +# - The script writes original and obfuscated Markdown to `scratch/`. |
| 23 | +# |
| 24 | +# Notes |
| 25 | +# - This is a simple demonstration. For production PII detection, consider |
| 26 | +# specialized models/pipelines and thorough evaluation. |
| 27 | +# %% |
| 28 | + |
| 29 | +import argparse |
| 30 | +import logging |
| 31 | +import os |
| 32 | +import re |
| 33 | +from pathlib import Path |
| 34 | +from typing import Dict, List, Tuple |
| 35 | + |
| 36 | +from docling_core.types.doc import ImageRefMode, TableItem, TextItem |
| 37 | +from tabulate import tabulate |
| 38 | + |
| 39 | +from docling.datamodel.base_models import InputFormat |
| 40 | +from docling.datamodel.pipeline_options import PdfPipelineOptions |
| 41 | +from docling.document_converter import DocumentConverter, PdfFormatOption |
| 42 | + |
| 43 | +_log = logging.getLogger(__name__) |
| 44 | + |
| 45 | +IMAGE_RESOLUTION_SCALE = 2.0 |
| 46 | +HF_MODEL = "dslim/bert-base-NER" # Swap with another HF NER/PII model if desired, eg https://huggingface.co/urchade/gliner_multi_pii-v1 looks very promising too! |
| 47 | +GLINER_MODEL = "urchade/gliner_multi_pii-v1" |
| 48 | + |
| 49 | + |
| 50 | +def _build_simple_ner_pipeline(): |
| 51 | + """Create a Hugging Face token-classification pipeline for NER. |
| 52 | +
|
| 53 | + Returns a callable like: ner(text) -> List[dict] |
| 54 | + """ |
| 55 | + try: |
| 56 | + from transformers import ( |
| 57 | + AutoModelForTokenClassification, |
| 58 | + AutoTokenizer, |
| 59 | + pipeline, |
| 60 | + ) |
| 61 | + except Exception: |
| 62 | + _log.error("Transformers not installed. Please run: pip install transformers") |
| 63 | + raise |
| 64 | + |
| 65 | + tokenizer = AutoTokenizer.from_pretrained(HF_MODEL) |
| 66 | + model = AutoModelForTokenClassification.from_pretrained(HF_MODEL) |
| 67 | + ner = pipeline( |
| 68 | + "token-classification", |
| 69 | + model=model, |
| 70 | + tokenizer=tokenizer, |
| 71 | + aggregation_strategy="simple", # groups subwords into complete entities |
| 72 | + # Note: modern Transformers returns `start`/`end` when possible with aggregation |
| 73 | + ) |
| 74 | + return ner |
| 75 | + |
| 76 | + |
| 77 | +class SimplePiiObfuscator: |
| 78 | + """Tracks PII strings and replaces them with stable IDs per entity type.""" |
| 79 | + |
| 80 | + def __init__(self, ner_callable): |
| 81 | + self.ner = ner_callable |
| 82 | + self.entity_map: Dict[str, str] = {} |
| 83 | + self.counters: Dict[str, int] = { |
| 84 | + "person": 0, |
| 85 | + "org": 0, |
| 86 | + "location": 0, |
| 87 | + "misc": 0, |
| 88 | + } |
| 89 | + # Map model labels to our coarse types |
| 90 | + self.label_map = { |
| 91 | + "PER": "person", |
| 92 | + "PERSON": "person", |
| 93 | + "ORG": "org", |
| 94 | + "ORGANIZATION": "org", |
| 95 | + "LOC": "location", |
| 96 | + "LOCATION": "location", |
| 97 | + "GPE": "location", |
| 98 | + # Fallbacks |
| 99 | + "MISC": "misc", |
| 100 | + "O": "misc", |
| 101 | + } |
| 102 | + # Only obfuscate these by default. Adjust as needed. |
| 103 | + self.allowed_types = {"person", "org", "location"} |
| 104 | + |
| 105 | + def _next_id(self, typ: str) -> str: |
| 106 | + self.counters[typ] += 1 |
| 107 | + return f"{typ}-{self.counters[typ]}" |
| 108 | + |
| 109 | + def _normalize(self, s: str) -> str: |
| 110 | + return re.sub(r"\s+", " ", s).strip() |
| 111 | + |
| 112 | + def _extract_entities(self, text: str) -> List[Tuple[str, str]]: |
| 113 | + """Run NER and return a list of (surface_text, type) to obfuscate.""" |
| 114 | + if not text: |
| 115 | + return [] |
| 116 | + results = self.ner(text) |
| 117 | + # Collect normalized items with optional span info |
| 118 | + items = [] |
| 119 | + for r in results: |
| 120 | + raw_label = r.get("entity_group") or r.get("entity") or "MISC" |
| 121 | + label = self.label_map.get(raw_label, "misc") |
| 122 | + if label not in self.allowed_types: |
| 123 | + continue |
| 124 | + start = r.get("start") |
| 125 | + end = r.get("end") |
| 126 | + word = self._normalize(r.get("word") or r.get("text") or "") |
| 127 | + items.append({"label": label, "start": start, "end": end, "word": word}) |
| 128 | + |
| 129 | + found: List[Tuple[str, str]] = [] |
| 130 | + # If the pipeline provides character spans, merge consecutive/overlapping |
| 131 | + # entities of the same type into a single span, then take the substring |
| 132 | + # from the original text. This handles cases like subword tokenization |
| 133 | + # where multiple adjacent pieces belong to the same named entity. |
| 134 | + have_spans = any(i["start"] is not None and i["end"] is not None for i in items) |
| 135 | + if have_spans: |
| 136 | + spans = [ |
| 137 | + i for i in items if i["start"] is not None and i["end"] is not None |
| 138 | + ] |
| 139 | + # Ensure processing order by start (then end) |
| 140 | + spans.sort(key=lambda x: (x["start"], x["end"])) |
| 141 | + |
| 142 | + merged = [] |
| 143 | + for s in spans: |
| 144 | + if not merged: |
| 145 | + merged.append(dict(s)) |
| 146 | + continue |
| 147 | + last = merged[-1] |
| 148 | + if s["label"] == last["label"] and s["start"] <= last["end"]: |
| 149 | + # Merge identical, overlapping, or touching spans of same type |
| 150 | + last["start"] = min(last["start"], s["start"]) |
| 151 | + last["end"] = max(last["end"], s["end"]) |
| 152 | + else: |
| 153 | + merged.append(dict(s)) |
| 154 | + |
| 155 | + for m in merged: |
| 156 | + surface = self._normalize(text[m["start"] : m["end"]]) |
| 157 | + if surface: |
| 158 | + found.append((surface, m["label"])) |
| 159 | + |
| 160 | + # Include any items lacking spans as-is (fallback) |
| 161 | + for i in items: |
| 162 | + if i["start"] is None or i["end"] is None: |
| 163 | + if i["word"]: |
| 164 | + found.append((i["word"], i["label"])) |
| 165 | + else: |
| 166 | + # Fallback when spans aren't provided: return normalized words |
| 167 | + for i in items: |
| 168 | + if i["word"]: |
| 169 | + found.append((i["word"], i["label"])) |
| 170 | + return found |
| 171 | + |
| 172 | + def obfuscate_text(self, text: str) -> str: |
| 173 | + if not text: |
| 174 | + return text |
| 175 | + |
| 176 | + entities = self._extract_entities(text) |
| 177 | + if not entities: |
| 178 | + return text |
| 179 | + |
| 180 | + # Deduplicate per text, keep stable global mapping |
| 181 | + unique_words: Dict[str, str] = {} |
| 182 | + for word, label in entities: |
| 183 | + if word not in self.entity_map: |
| 184 | + replacement = self._next_id(label) |
| 185 | + self.entity_map[word] = replacement |
| 186 | + unique_words[word] = self.entity_map[word] |
| 187 | + |
| 188 | + # Replace longer matches first to avoid partial overlaps |
| 189 | + sorted_pairs = sorted( |
| 190 | + unique_words.items(), key=lambda x: len(x[0]), reverse=True |
| 191 | + ) |
| 192 | + |
| 193 | + def replace_once(s: str, old: str, new: str) -> str: |
| 194 | + # Use simple substring replacement; for stricter matching, use word boundaries |
| 195 | + # when appropriate (e.g., names). This is a demo, keep it simple. |
| 196 | + pattern = re.escape(old) |
| 197 | + return re.sub(pattern, new, s) |
| 198 | + |
| 199 | + obfuscated = text |
| 200 | + for old, new in sorted_pairs: |
| 201 | + obfuscated = replace_once(obfuscated, old, new) |
| 202 | + return obfuscated |
| 203 | + |
| 204 | + |
| 205 | +def _build_gliner_model(): |
| 206 | + """Create a GLiNER model for PII-like entity extraction. |
| 207 | +
|
| 208 | + Returns a tuple (model, labels) where model.predict_entities(text, labels) |
| 209 | + yields entities with "text" and "label" fields. |
| 210 | + """ |
| 211 | + try: |
| 212 | + from gliner import GLiNER # type: ignore |
| 213 | + except Exception: |
| 214 | + _log.error( |
| 215 | + "GLiNER not installed. Please run: pip install gliner torch --extra-index-url https://download.pytorch.org/whl/cpu" |
| 216 | + ) |
| 217 | + raise |
| 218 | + |
| 219 | + model = GLiNER.from_pretrained(GLINER_MODEL) |
| 220 | + # Curated set of labels for PII detection. Adjust as needed. |
| 221 | + labels = [ |
| 222 | + # "work", |
| 223 | + "booking number", |
| 224 | + "personally identifiable information", |
| 225 | + "driver licence", |
| 226 | + "person", |
| 227 | + "full address", |
| 228 | + "company", |
| 229 | + # "actor", |
| 230 | + # "character", |
| 231 | + "email", |
| 232 | + "passport number", |
| 233 | + "Social Security Number", |
| 234 | + "phone number", |
| 235 | + ] |
| 236 | + return model, labels |
| 237 | + |
| 238 | + |
| 239 | +class AdvancedPIIObfuscator: |
| 240 | + """PII obfuscator powered by GLiNER with fine-grained labels. |
| 241 | +
|
| 242 | + - Uses GLiNER's `predict_entities(text, labels)` to detect entities. |
| 243 | + - Obfuscates with stable IDs per fine-grained label, e.g. `email-1`. |
| 244 | + """ |
| 245 | + |
| 246 | + def __init__(self, gliner_model, labels: List[str]): |
| 247 | + self.model = gliner_model |
| 248 | + self.labels = labels |
| 249 | + self.entity_map: Dict[str, str] = {} |
| 250 | + self.counters: Dict[str, int] = {} |
| 251 | + |
| 252 | + def _normalize(self, s: str) -> str: |
| 253 | + return re.sub(r"\s+", " ", s).strip() |
| 254 | + |
| 255 | + def _norm_label(self, label: str) -> str: |
| 256 | + return ( |
| 257 | + re.sub( |
| 258 | + r"[^a-z0-9_]+", "_", label.lower().replace(" ", "_").replace("-", "_") |
| 259 | + ).strip("_") |
| 260 | + or "pii" |
| 261 | + ) |
| 262 | + |
| 263 | + def _next_id(self, typ: str) -> str: |
| 264 | + self.cc(typ) |
| 265 | + self.counters[typ] += 1 |
| 266 | + return f"{typ}-{self.counters[typ]}" |
| 267 | + |
| 268 | + def cc(self, typ: str) -> None: |
| 269 | + if typ not in self.counters: |
| 270 | + self.counters[typ] = 0 |
| 271 | + |
| 272 | + def _extract_entities(self, text: str) -> List[Tuple[str, str]]: |
| 273 | + if not text: |
| 274 | + return [] |
| 275 | + results = self.model.predict_entities( |
| 276 | + text, self.labels |
| 277 | + ) # expects dicts with text/label |
| 278 | + found: List[Tuple[str, str]] = [] |
| 279 | + for r in results: |
| 280 | + label = self._norm_label(str(r.get("label", "pii"))) |
| 281 | + surface = self._normalize(str(r.get("text", ""))) |
| 282 | + if surface: |
| 283 | + found.append((surface, label)) |
| 284 | + return found |
| 285 | + |
| 286 | + def obfuscate_text(self, text: str) -> str: |
| 287 | + if not text: |
| 288 | + return text |
| 289 | + entities = self._extract_entities(text) |
| 290 | + if not entities: |
| 291 | + return text |
| 292 | + |
| 293 | + unique_words: Dict[str, str] = {} |
| 294 | + for word, label in entities: |
| 295 | + if word not in self.entity_map: |
| 296 | + replacement = self._next_id(label) |
| 297 | + self.entity_map[word] = replacement |
| 298 | + unique_words[word] = self.entity_map[word] |
| 299 | + |
| 300 | + sorted_pairs = sorted( |
| 301 | + unique_words.items(), key=lambda x: len(x[0]), reverse=True |
| 302 | + ) |
| 303 | + |
| 304 | + def replace_once(s: str, old: str, new: str) -> str: |
| 305 | + pattern = re.escape(old) |
| 306 | + return re.sub(pattern, new, s) |
| 307 | + |
| 308 | + obfuscated = text |
| 309 | + for old, new in sorted_pairs: |
| 310 | + obfuscated = replace_once(obfuscated, old, new) |
| 311 | + return obfuscated |
| 312 | + |
| 313 | + |
| 314 | +def main(): |
| 315 | + logging.basicConfig(level=logging.INFO) |
| 316 | + |
| 317 | + data_folder = Path(__file__).parent / "../../tests/data" |
| 318 | + input_doc_path = data_folder / "pdf/2206.01062.pdf" |
| 319 | + output_dir = Path("scratch") # ensure this directory exists before saving |
| 320 | + |
| 321 | + # Choose engine via CLI flag or env var (default: hf) |
| 322 | + parser = argparse.ArgumentParser(description="PII obfuscation example") |
| 323 | + parser.add_argument( |
| 324 | + "--engine", |
| 325 | + choices=["hf", "gliner"], |
| 326 | + default=os.getenv("PII_ENGINE", "hf"), |
| 327 | + help="NER engine: 'hf' (Transformers) or 'gliner' (GLiNER)", |
| 328 | + ) |
| 329 | + args = parser.parse_args() |
| 330 | + |
| 331 | + # Ensure output dir exists |
| 332 | + output_dir.mkdir(parents=True, exist_ok=True) |
| 333 | + |
| 334 | + # Keep and generate images so Markdown can embed them |
| 335 | + pipeline_options = PdfPipelineOptions() |
| 336 | + pipeline_options.images_scale = IMAGE_RESOLUTION_SCALE |
| 337 | + pipeline_options.generate_page_images = True |
| 338 | + pipeline_options.generate_picture_images = True |
| 339 | + |
| 340 | + doc_converter = DocumentConverter( |
| 341 | + format_options={ |
| 342 | + InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) |
| 343 | + } |
| 344 | + ) |
| 345 | + |
| 346 | + conv_res = doc_converter.convert(input_doc_path) |
| 347 | + conv_doc = conv_res.document |
| 348 | + doc_filename = conv_res.input.file.name |
| 349 | + |
| 350 | + # Save markdown with embedded pictures in original text |
| 351 | + md_filename = output_dir / f"{doc_filename}-with-images-orig.md" |
| 352 | + conv_doc.save_as_markdown(md_filename, image_mode=ImageRefMode.EMBEDDED) |
| 353 | + |
| 354 | + # Build NER pipeline and obfuscator |
| 355 | + if args.engine == "gliner": |
| 356 | + _log.info("Using GLiNER-based AdvancedPIIObfuscator") |
| 357 | + gliner_model, gliner_labels = _build_gliner_model() |
| 358 | + obfuscator = AdvancedPIIObfuscator(gliner_model, gliner_labels) |
| 359 | + else: |
| 360 | + _log.info("Using HF Transformers-based SimplePiiObfuscator") |
| 361 | + ner = _build_simple_ner_pipeline() |
| 362 | + obfuscator = SimplePiiObfuscator(ner) |
| 363 | + |
| 364 | + for element, _level in conv_res.document.iterate_items(): |
| 365 | + if isinstance(element, TextItem): |
| 366 | + element.orig = element.text |
| 367 | + element.text = obfuscator.obfuscate_text(element.text) |
| 368 | + # print(element.orig, " => ", element.text) |
| 369 | + |
| 370 | + elif isinstance(element, TableItem): |
| 371 | + for cell in element.data.table_cells: |
| 372 | + cell.text = obfuscator.obfuscate_text(cell.text) |
| 373 | + |
| 374 | + # Save markdown with embedded pictures and obfuscated text |
| 375 | + md_filename = output_dir / f"{doc_filename}-with-images-pii-obfuscated.md" |
| 376 | + conv_doc.save_as_markdown(md_filename, image_mode=ImageRefMode.EMBEDDED) |
| 377 | + |
| 378 | + # Optional: log mapping summary |
| 379 | + if obfuscator.entity_map: |
| 380 | + data = [] |
| 381 | + for key, val in obfuscator.entity_map.items(): |
| 382 | + data.append([key, val]) |
| 383 | + |
| 384 | + _log.info( |
| 385 | + f"Obfuscated entities:\n\n{tabulate(data)}", |
| 386 | + ) |
| 387 | + |
| 388 | + |
| 389 | +if __name__ == "__main__": |
| 390 | + main() |
0 commit comments