Skip to content

Commit 9df7052

Browse files
authored
Latex now works without quirky hassle.
1 parent 26b4a22 commit 9df7052

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -220,14 +220,14 @@ See [jupyter notebook](https://github.com/domschl/syncognite/blob/master/doc/res
220220
<!-- the folloing uses the hack from https://gist.github.com/a-rodin/fef3f543412d6e1ec5b6cf55bf197d7b to display latex. Seriously. -->
221221
<!-- Good code generator latex -> github: https://jsfiddle.net/8ndx694g/ -->
222222

223-
(1) <img src="https://render.githubusercontent.com/render/math?math=rsi(x)=\frac{x}{1-e^{-x}}">
223+
(1) $\quad rsi(x)=\frac{x}{1-e^{-x}}$
224224

225-
<img src="https://render.githubusercontent.com/render/math?math=rsi(x)"> can be rewritten as:
225+
$rsi(x)$ can be rewritten as:
226226

227-
(2) <img src="https://render.githubusercontent.com/render/math?math=rsi(x)=\frac{x}{e^{x}-1}%2Bx">
227+
(2) $\quad rsi(x)=\frac{x}{e^{x}-1}+x$
228228

229229
thus can be interpreted as a residual combination of linearity and non-linearity via addition.
230230

231-
Since <img src="https://render.githubusercontent.com/render/math?math=rsi(x)"> shows a phase-transition instability at <img src="https://render.githubusercontent.com/render/math?math=x=0">, a taylor <img src="https://render.githubusercontent.com/render/math?math=O(4)"> approximation is used for <img src="https://render.githubusercontent.com/render/math?math=rsi(x)"> and <img src="https://render.githubusercontent.com/render/math?math=%5Cnabla rsi(x)"> for <img src="https://render.githubusercontent.com/render/math?math=-h%20%3C%200%20%3C%20h">.
231+
Since $rsi(x)$ shows a phase-transition instability at $x=0$, a taylor $O(4)$ approximation is used for $rsi(x)$ and $\nabla rsi(x)$ for $-h\lt 0\lt h$.
232232

233-
Both <img src="https://render.githubusercontent.com/render/math?math=e%5E%7Bx%7D"> quotients (1) and (2) have as limit relu(x) or, in case of (2): -relu(x), if <img src="https://render.githubusercontent.com/render/math?math=e%5E%7Bx%7D"> is replaced by <img src="https://render.githubusercontent.com/render/math?math=e%5E%7B%5Cfrac%7Bx%7D%7Ba%7D%7D"> for small constants a.
233+
Both $e^x$ quotients (1) and (2) have as limit $ReLU(x)$ or, in case of (2): $-ReLU(x)$, if $e^x$ is replaced by $e^{\frac{x}{a}}$ for small constants $a$.

0 commit comments

Comments
 (0)