Skip to content

Commit 07e6273

Browse files
committed
Reorder sections in README
1 parent b2da6e6 commit 07e6273

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

README.md

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -12,8 +12,8 @@
1212

1313
## Index
1414

15-
* [scikit-learn](#scikit-learn)
1615
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
16+
* [scikit-learn](#scikit-learn)
1717
* [deep-learning](#deep-learning)
1818
* [statistical-inference-scipy](#statistical-inference-scipy)
1919
* [pandas](#pandas)
@@ -31,6 +31,20 @@
3131
* [contact-info](#contact-info)
3232
* [license](#license)
3333

34+
<br/>
35+
<p align="center">
36+
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
37+
</p>
38+
39+
## kaggle-and-business-analyses
40+
41+
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
42+
43+
| Notebook | Description |
44+
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
45+
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. |
46+
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
47+
3448
<br/>
3549
<p align="center">
3650
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
@@ -52,20 +66,6 @@ IPython Notebook(s) demonstrating scikit-learn functionality.
5266
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
5367
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
5468

55-
<br/>
56-
<p align="center">
57-
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
58-
</p>
59-
60-
## kaggle-and-business-analyses
61-
62-
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
63-
64-
| Notebook | Description |
65-
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
66-
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. |
67-
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
68-
6969
<br/>
7070
<p align="center">
7171
<img src="http://i.imgur.com/ZhKXrKZ.png">

0 commit comments

Comments
 (0)