Skip to content

Commit 4b403cc

Browse files
committed
Add TensorFlow multi-gpu computation notebook.
1 parent 438c18d commit 4b403cc

File tree

2 files changed

+185
-0
lines changed

2 files changed

+185
-0
lines changed

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -102,6 +102,7 @@ IPython Notebook(s) demonstrating deep learning functionality.
102102
| [tsf-cnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/convolutional_network.ipynb) | Implement convolutional neural networks in TensorFlow. |
103103
| [tsf-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/multilayer_perceptron.ipynb) | Implement multilayer perceptrons in TensorFlow. |
104104
| [tsf-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/recurrent_network.ipynb) | Implement recurrent neural networks in TensorFlow. |
105+
| [tsf-gpu](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/4_multi_gpu/multigpu_basics.ipynb) | Learn about basic multi-GPU computation in TensorFlow. |
105106

106107
### tensor-flow-exercises
107108

Lines changed: 184 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,184 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Basic Multi GPU Computation in TensorFlow\n",
8+
"\n",
9+
"Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien\n",
10+
"\n",
11+
"## Setup\n",
12+
"\n",
13+
"Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md)"
14+
]
15+
},
16+
{
17+
"cell_type": "markdown",
18+
"metadata": {
19+
"collapsed": true
20+
},
21+
"source": [
22+
"This tutorial requires your machine to have 2 GPUs\n",
23+
"* \"/cpu:0\": The CPU of your machine.\n",
24+
"* \"/gpu:0\": The first GPU of your machine\n",
25+
"* \"/gpu:1\": The second GPU of your machine\n",
26+
"* For this example, we are using 2 GTX-980"
27+
]
28+
},
29+
{
30+
"cell_type": "code",
31+
"execution_count": 2,
32+
"metadata": {
33+
"collapsed": true
34+
},
35+
"outputs": [],
36+
"source": [
37+
"import numpy as np\n",
38+
"import tensorflow as tf\n",
39+
"import datetime"
40+
]
41+
},
42+
{
43+
"cell_type": "code",
44+
"execution_count": 3,
45+
"metadata": {
46+
"collapsed": true
47+
},
48+
"outputs": [],
49+
"source": [
50+
"#Processing Units logs\n",
51+
"log_device_placement = True\n",
52+
"\n",
53+
"#num of multiplications to perform\n",
54+
"n = 10"
55+
]
56+
},
57+
{
58+
"cell_type": "code",
59+
"execution_count": null,
60+
"metadata": {
61+
"collapsed": false
62+
},
63+
"outputs": [],
64+
"source": [
65+
"# Example: compute A^n + B^n on 2 GPUs\n",
66+
"\n",
67+
"# Create random large matrix\n",
68+
"A = np.random.rand(1e4, 1e4).astype('float32')\n",
69+
"B = np.random.rand(1e4, 1e4).astype('float32')\n",
70+
"\n",
71+
"# Creates a graph to store results\n",
72+
"c1 = []\n",
73+
"c2 = []\n",
74+
"\n",
75+
"# Define matrix power\n",
76+
"def matpow(M, n):\n",
77+
" if n < 1: #Abstract cases where n < 1\n",
78+
" return M\n",
79+
" else:\n",
80+
" return tf.matmul(M, matpow(M, n-1))"
81+
]
82+
},
83+
{
84+
"cell_type": "code",
85+
"execution_count": 6,
86+
"metadata": {
87+
"collapsed": true
88+
},
89+
"outputs": [],
90+
"source": [
91+
"# Single GPU computing\n",
92+
"\n",
93+
"with tf.device('/gpu:0'):\n",
94+
" a = tf.constant(A)\n",
95+
" b = tf.constant(B)\n",
96+
" #compute A^n and B^n and store results in c1\n",
97+
" c1.append(matpow(a, n))\n",
98+
" c1.append(matpow(b, n))\n",
99+
"\n",
100+
"with tf.device('/cpu:0'):\n",
101+
" sum = tf.add_n(c1) #Addition of all elements in c1, i.e. A^n + B^n\n",
102+
"\n",
103+
"t1_1 = datetime.datetime.now()\n",
104+
"with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:\n",
105+
" # Runs the op.\n",
106+
" sess.run(sum)\n",
107+
"t2_1 = datetime.datetime.now()"
108+
]
109+
},
110+
{
111+
"cell_type": "code",
112+
"execution_count": 7,
113+
"metadata": {
114+
"collapsed": true
115+
},
116+
"outputs": [],
117+
"source": [
118+
"# Multi GPU computing\n",
119+
"# GPU:0 computes A^n\n",
120+
"with tf.device('/gpu:0'):\n",
121+
" #compute A^n and store result in c2\n",
122+
" a = tf.constant(A)\n",
123+
" c2.append(matpow(a, n))\n",
124+
"\n",
125+
"#GPU:1 computes B^n\n",
126+
"with tf.device('/gpu:1'):\n",
127+
" #compute B^n and store result in c2\n",
128+
" b = tf.constant(B)\n",
129+
" c2.append(matpow(b, n))\n",
130+
"\n",
131+
"with tf.device('/cpu:0'):\n",
132+
" sum = tf.add_n(c2) #Addition of all elements in c2, i.e. A^n + B^n\n",
133+
"\n",
134+
"t1_2 = datetime.datetime.now()\n",
135+
"with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:\n",
136+
" # Runs the op.\n",
137+
" sess.run(sum)\n",
138+
"t2_2 = datetime.datetime.now()"
139+
]
140+
},
141+
{
142+
"cell_type": "code",
143+
"execution_count": 8,
144+
"metadata": {
145+
"collapsed": false
146+
},
147+
"outputs": [
148+
{
149+
"name": "stdout",
150+
"output_type": "stream",
151+
"text": [
152+
"Single GPU computation time: 0:00:11.833497\n",
153+
"Multi GPU computation time: 0:00:07.085913\n"
154+
]
155+
}
156+
],
157+
"source": [
158+
"print \"Single GPU computation time: \" + str(t2_1-t1_1)\n",
159+
"print \"Multi GPU computation time: \" + str(t2_2-t1_2)"
160+
]
161+
}
162+
],
163+
"metadata": {
164+
"kernelspec": {
165+
"display_name": "Python 3",
166+
"language": "python",
167+
"name": "python3"
168+
},
169+
"language_info": {
170+
"codemirror_mode": {
171+
"name": "ipython",
172+
"version": 3
173+
},
174+
"file_extension": ".py",
175+
"mimetype": "text/x-python",
176+
"name": "python",
177+
"nbconvert_exporter": "python",
178+
"pygments_lexer": "ipython3",
179+
"version": "3.4.3"
180+
}
181+
},
182+
"nbformat": 4,
183+
"nbformat_minor": 0
184+
}

0 commit comments

Comments
 (0)