Skip to content

Commit 84a524f

Browse files
committed
Re-order sections.
1 parent 7f7a7e7 commit 84a524f

File tree

1 file changed

+44
-44
lines changed

1 file changed

+44
-44
lines changed

README.md

Lines changed: 44 additions & 44 deletions
Original file line numberDiff line numberDiff line change
@@ -12,16 +12,16 @@
1212

1313
## Index
1414

15-
* [spark](#spark)
16-
* [mapreduce-python](#mapreduce-python)
17-
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
1815
* [deep-learning](#deep-learning)
1916
* [scikit-learn](#scikit-learn)
2017
* [statistical-inference-scipy](#statistical-inference-scipy)
2118
* [pandas](#pandas)
2219
* [matplotlib](#matplotlib)
2320
* [numpy](#numpy)
2421
* [python-data](#python-data)
22+
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
23+
* [spark](#spark)
24+
* [mapreduce-python](#mapreduce-python)
2525
* [amazon web services](#aws)
2626
* [command lines](#commands)
2727
* [misc](#misc)
@@ -31,47 +31,6 @@
3131
* [contact-info](#contact-info)
3232
* [license](#license)
3333

34-
<br/>
35-
<p align="center">
36-
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/spark.png">
37-
</p>
38-
39-
## spark
40-
41-
IPython Notebook(s) demonstrating spark and HDFS functionality.
42-
43-
| Notebook | Description |
44-
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
45-
| [spark](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/spark/spark.ipynb) | In-memory cluster computing framework, up to 100 times faster for certain applications and is well suited for machine learning algorithms. |
46-
| [hdfs](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/spark/hdfs.ipynb) | Reliably stores very large files across machines in a large cluster. |
47-
48-
<br/>
49-
<p align="center">
50-
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/mrjob.png">
51-
</p>
52-
53-
## mapreduce-python
54-
55-
IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.
56-
57-
| Notebook | Description |
58-
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
59-
| [mapreduce-python](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/mapreduce/mapreduce-python.ipynb) | Runs MapReduce jobs in Python, executing jobs locally or on Hadoop clusters. Demonstrates Hadoop Streaming in Python code with unit test and [mrjob](https://github.com/Yelp/mrjob) config file to analyze Amazon S3 bucket logs on Elastic MapReduce. [Disco](https://github.com/discoproject/disco/) is another python-based alternative.|
60-
61-
<br/>
62-
<p align="center">
63-
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
64-
</p>
65-
66-
## kaggle-and-business-analyses
67-
68-
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
69-
70-
| Notebook | Description |
71-
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
72-
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
73-
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predicts customer churn. Exercises logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Discussion of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
74-
7534
<br/>
7635
<p align="center">
7736
<img src="http://i.imgur.com/ZhKXrKZ.png">
@@ -230,6 +189,47 @@ IPython Notebook(s) demonstrating Python functionality geared towards data analy
230189
| [pdb](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/pdb.ipynb) | Learn how to debug in Python with the interactive source code debugger. |
231190
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/unit_tests.ipynb) | Learn how to test in Python with Nose unit tests. |
232191

192+
<br/>
193+
<p align="center">
194+
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
195+
</p>
196+
197+
## kaggle-and-business-analyses
198+
199+
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
200+
201+
| Notebook | Description |
202+
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
203+
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
204+
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predicts customer churn. Exercises logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Discussion of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
205+
206+
<br/>
207+
<p align="center">
208+
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/spark.png">
209+
</p>
210+
211+
## spark
212+
213+
IPython Notebook(s) demonstrating spark and HDFS functionality.
214+
215+
| Notebook | Description |
216+
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
217+
| [spark](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/spark/spark.ipynb) | In-memory cluster computing framework, up to 100 times faster for certain applications and is well suited for machine learning algorithms. |
218+
| [hdfs](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/spark/hdfs.ipynb) | Reliably stores very large files across machines in a large cluster. |
219+
220+
<br/>
221+
<p align="center">
222+
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/mrjob.png">
223+
</p>
224+
225+
## mapreduce-python
226+
227+
IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.
228+
229+
| Notebook | Description |
230+
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
231+
| [mapreduce-python](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/mapreduce/mapreduce-python.ipynb) | Runs MapReduce jobs in Python, executing jobs locally or on Hadoop clusters. Demonstrates Hadoop Streaming in Python code with unit test and [mrjob](https://github.com/Yelp/mrjob) config file to analyze Amazon S3 bucket logs on Elastic MapReduce. [Disco](https://github.com/discoproject/disco/) is another python-based alternative.|
232+
233233
<br/>
234234
<p align="center">
235235
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/aws.png">

0 commit comments

Comments
 (0)