Skip to content

Commit 877f584

Browse files
committed
Reorder notebook sections
1 parent 30c47a4 commit 877f584

File tree

1 file changed

+37
-37
lines changed

1 file changed

+37
-37
lines changed

README.md

Lines changed: 37 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -12,14 +12,14 @@
1212

1313
## Index
1414

15-
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
16-
* [scikit-learn](#scikit-learn)
1715
* [deep-learning](#deep-learning)
16+
* [scikit-learn](#scikit-learn)
1817
* [statistical-inference-scipy](#statistical-inference-scipy)
1918
* [pandas](#pandas)
2019
* [matplotlib](#matplotlib)
2120
* [numpy](#numpy)
2221
* [python-data](#python-data)
22+
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
2323
* [spark](#spark)
2424
* [mapreduce-python](#mapreduce-python)
2525
* [amazon web services](#aws)
@@ -31,41 +31,6 @@
3131
* [contact-info](#contact-info)
3232
* [license](#license)
3333

34-
<br/>
35-
<p align="center">
36-
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
37-
</p>
38-
39-
## kaggle-and-business-analyses
40-
41-
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
42-
43-
| Notebook | Description |
44-
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
45-
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. |
46-
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
47-
48-
<br/>
49-
<p align="center">
50-
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
51-
</p>
52-
53-
## scikit-learn
54-
55-
IPython Notebook(s) demonstrating scikit-learn functionality.
56-
57-
| Notebook | Description |
58-
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
59-
| [intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
60-
| [knn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb#K-Nearest-Neighbors-Classifier) | Implement k-nearest neighbors in scikit-learn. |
61-
| [linear-reg](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-linear-reg.ipynb) | Implement linear regression in scikit-learn. |
62-
| [svm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-svm.ipynb) | Implement support vector machine classifiers with and without kernels in scikit-learn. |
63-
| [random-forest](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-random-forest.ipynb) | Implement random forest classifiers and regressors in scikit-learn. |
64-
| [k-means](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-k-means.ipynb) | Implement k-means clustering in scikit-learn. |
65-
| [pca](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-pca.ipynb) | Implement principal component analysis in scikit-learn. |
66-
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
67-
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
68-
6934
<br/>
7035
<p align="center">
7136
<img src="http://i.imgur.com/ZhKXrKZ.png">
@@ -158,6 +123,27 @@ Additional TensorFlow tutorials:
158123
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
159124
| [deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
160125

126+
<br/>
127+
<p align="center">
128+
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scikitlearn.png">
129+
</p>
130+
131+
## scikit-learn
132+
133+
IPython Notebook(s) demonstrating scikit-learn functionality.
134+
135+
| Notebook | Description |
136+
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
137+
| [intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb) | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. |
138+
| [knn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-intro.ipynb#K-Nearest-Neighbors-Classifier) | Implement k-nearest neighbors in scikit-learn. |
139+
| [linear-reg](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-linear-reg.ipynb) | Implement linear regression in scikit-learn. |
140+
| [svm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-svm.ipynb) | Implement support vector machine classifiers with and without kernels in scikit-learn. |
141+
| [random-forest](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-random-forest.ipynb) | Implement random forest classifiers and regressors in scikit-learn. |
142+
| [k-means](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-k-means.ipynb) | Implement k-means clustering in scikit-learn. |
143+
| [pca](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-pca.ipynb) | Implement principal component analysis in scikit-learn. |
144+
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Implement Gaussian mixture models in scikit-learn. |
145+
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Implement validation and model selection in scikit-learn. |
146+
161147
<br/>
162148
<p align="center">
163149
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scipy.png">
@@ -272,6 +258,20 @@ IPython Notebook(s) demonstrating Python functionality geared towards data analy
272258
| [pdb](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/pdb.ipynb) | Learn how to debug in Python with the interactive source code debugger. |
273259
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/unit_tests.ipynb) | Learn how to test in Python with Nose unit tests. |
274260

261+
<br/>
262+
<p align="center">
263+
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
264+
</p>
265+
266+
## kaggle-and-business-analyses
267+
268+
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
269+
270+
| Notebook | Description |
271+
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
272+
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. |
273+
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
274+
275275
<br/>
276276
<p align="center">
277277
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/spark.png">

0 commit comments

Comments
 (0)