Skip to content

Commit e43d925

Browse files
committed
Re-order sections.
1 parent 5ecc149 commit e43d925

File tree

1 file changed

+43
-43
lines changed

1 file changed

+43
-43
lines changed

README.md

Lines changed: 43 additions & 43 deletions
Original file line numberDiff line numberDiff line change
@@ -18,15 +18,15 @@ For detailed instructions, scripts, and tools to more optimally set up your deve
1818

1919
* [spark](#spark)
2020
* [mapreduce-python](#mapreduce-python)
21-
* [amazon web services](#aws)
2221
* [kaggle-and-business-analyses](#kaggle-and-business-analyses)
23-
* [scikit-learn](#scikit-learn)
2422
* [deep-learning](#deep-learning)
23+
* [scikit-learn](#scikit-learn)
2524
* [statistical-inference-scipy](#statistical-inference-scipy)
2625
* [pandas](#pandas)
2726
* [matplotlib](#matplotlib)
2827
* [numpy](#numpy)
2928
* [python-data](#python-data)
29+
* [amazon web services](#aws)
3030
* [command lines](#commands)
3131
* [misc](#misc)
3232
* [notebook-installation](#notebook-installation)
@@ -64,41 +64,36 @@ IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.
6464

6565
<br/>
6666
<p align="center">
67-
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/aws.png">
67+
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
6868
</p>
6969

70-
## aws
71-
72-
IPython Notebook(s) demonstrating Amazon Web Services (AWS) and AWS tools functionality.
73-
74-
Also check out:
70+
## kaggle-and-business-analyses
7571

76-
* [SAWS](https://github.com/donnemartin/saws): A Supercharged AWS command line interface (CLI).
77-
* [Awesome AWS](https://github.com/donnemartin/awesome-aws): A curated list of libraries, open source repos, guides, blogs, and other resources.
72+
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
7873

7974
| Notebook | Description |
80-
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
81-
| [boto](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#Boto) | Official AWS SDK for Python. |
82-
| [s3cmd](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3cmd) | Interacts with S3 through the command line. |
83-
| [s3distcp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3distcp) | Combines smaller files and aggregates them together by taking in a pattern and target file. S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster. |
84-
| [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put) | Uploads multiple files to S3 in parallel. |
85-
| [redshift](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#redshift) | Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP). |
86-
| [kinesis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#kinesis) | Streams data in real time with the ability to process thousands of data streams per second. |
87-
| [lambda](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#lambda) | Runs code in response to events, automatically managing compute resources. |
75+
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
76+
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
77+
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predicts customer churn. Exercises logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Discussion of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
8878

8979
<br/>
9080
<p align="center">
91-
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/kaggle.png">
81+
<img src="http://i.imgur.com/ZhKXrKZ.png">
9282
</p>
9383

94-
## kaggle-and-business-analyses
84+
## deep-learning
9585

96-
IPython Notebook(s) used in [kaggle](https://www.kaggle.com/) competitions and business analyses.
86+
IPython Notebook(s) demonstrating deep learning functionality.
9787

9888
| Notebook | Description |
99-
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
100-
| [titanic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/kaggle/titanic.ipynb) | Predicts survival on the Titanic. Demonstrates data cleaning, exploratory data analysis, and machine learning. |
101-
| [churn-analysis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/analyses/churn.ipynb) | Predicts customer churn. Exercises logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Discussion of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|
89+
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
90+
| [ts-not-mnist](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/1_notmnist.ipynb) | Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow. |
91+
| [ts-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb) | Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
92+
| [ts-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb) | Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
93+
| [ts-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb) | Create convolutional neural networks in TensorFlow. |
94+
| [ts-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb) | Train a skip-gram model over Text8 data in TensorFlow. |
95+
| [ts-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb) | Train a LSTM character model over Text8 data in TensorFlow. |
96+
| [deep dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
10297

10398
<br/>
10499
<p align="center">
@@ -121,25 +116,6 @@ IPython Notebook(s) demonstrating scikit-learn functionality.
121116
| [gmm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-gmm.ipynb) | Gaussian mixture models. |
122117
| [validation](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/scikit-learn/scikit-learn-validation.ipynb) | Validation and model selection. |
123118

124-
<br/>
125-
<p align="center">
126-
<img src="http://i.imgur.com/ZhKXrKZ.png">
127-
</p>
128-
129-
## deep-learning
130-
131-
IPython Notebook(s) demonstrating deep learning functionality.
132-
133-
| Notebook | Description |
134-
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
135-
| [deep dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb) | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
136-
| [ts-not-mnist](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/1_notmnist.ipynb) | Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow. |
137-
| [ts-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb) | Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
138-
| [ts-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb) | Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
139-
| [ts-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb) | Create convolutional neural networks in TensorFlow. |
140-
| [ts-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb) | Train a skip-gram model over Text8 data in TensorFlow. |
141-
| [ts-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb) | Train a LSTM character model over Text8 data in TensorFlow. |
142-
143119
<br/>
144120
<p align="center">
145121
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/scipy.png">
@@ -213,6 +189,30 @@ IPython Notebook(s) demonstrating Python functionality geared towards data analy
213189
| [pdb](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/pdb.ipynb) | Interactive source code debugger. |
214190
| [unit tests](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/python-data/unit_tests.ipynb) | Nose unit tests. |
215191

192+
<br/>
193+
<p align="center">
194+
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/aws.png">
195+
</p>
196+
197+
## aws
198+
199+
IPython Notebook(s) demonstrating Amazon Web Services (AWS) and AWS tools functionality.
200+
201+
Also check out:
202+
203+
* [SAWS](https://github.com/donnemartin/saws): A Supercharged AWS command line interface (CLI).
204+
* [Awesome AWS](https://github.com/donnemartin/awesome-aws): A curated list of libraries, open source repos, guides, blogs, and other resources.
205+
206+
| Notebook | Description |
207+
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
208+
| [boto](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#Boto) | Official AWS SDK for Python. |
209+
| [s3cmd](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3cmd) | Interacts with S3 through the command line. |
210+
| [s3distcp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3distcp) | Combines smaller files and aggregates them together by taking in a pattern and target file. S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster. |
211+
| [s3-parallel-put](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#s3-parallel-put) | Uploads multiple files to S3 in parallel. |
212+
| [redshift](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#redshift) | Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP). |
213+
| [kinesis](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#kinesis) | Streams data in real time with the ability to process thousands of data streams per second. |
214+
| [lambda](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/aws/aws.ipynb#lambda) | Runs code in response to events, automatically managing compute resources. |
215+
216216
<br/>
217217
<p align="center">
218218
<img src="https://raw.githubusercontent.com/donnemartin/data-science-ipython-notebooks/master/images/commands.png">

0 commit comments

Comments
 (0)