You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|[tsf-basics](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/1_intro/basic_operations.ipynb)| Learn basic operations in TensorFlow, a library for various kinds of perceptual and language understanding tasks from Google. |
98
+
|[tsf-linear](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/2_basic_classifiers/linear_regression.ipynb)| Implement linear regression in TensorFlow. |
99
+
|[tsf-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/2_basic_classifiers/logistic_regression.ipynb)| Implement logistic regression in TensorFlow. |
100
+
|[tsf-nn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/2_basic_classifiers/nearest_neighbor.ipynb)| Implement nearest neighboars in TensorFlow. |
101
+
|[tsf-alex](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/alexnet.ipynb)| Implement AlexNet in TensorFlow. |
102
+
|[tsf-cnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/convolutional_network.ipynb)| Implement convolutional neural networks in TensorFlow. |
103
+
|[tsf-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/multilayer_perceptron.ipynb)| Implement multilayer perceptrons in TensorFlow. |
104
+
|[tsf-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/3_neural_networks/recurrent_network.ipynb)| Implement recurrent neural networks in TensorFlow. |
105
+
|[tsf-gpu](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/4_multi_gpu/multigpu_basics.ipynb)| Learn about basic multi-GPU computation in TensorFlow. |
106
+
|[tsf-gviz](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/5_ui/graph_visualization.ipynb)| Learn about graph visualization in TensorFlow. |
107
+
|[tsf-lviz](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/5_ui/loss_visualization.ipynb)| Learn about loss visualization in TensorFlow. |
|[tsf-not-mnist](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/1_notmnist.ipynb)| Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow. |
91
-
|[tsf-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb)| Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
92
-
|[tsf-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb)| Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
93
-
|[tsf-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb)| Create convolutional neural networks in TensorFlow. |
94
-
|[tsf-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb)| Train a skip-gram model over Text8 data in TensorFlow. |
95
-
|[tsf-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb)| Train a LSTM character model over Text8 data in TensorFlow. |
96
-
|[theano-intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/intro_theano.ipynb)| Intro to Theano, which allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation. |
97
-
|[theano-scan](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/scan_tutorial/scan_tutorial.ipynb)| Learn scans, a mechanism to perform loops in a Theano graph. |
98
-
|[theano-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/logistic_regression.ipynb)| Implement logistic regression in Theano. |
99
-
|[theano-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/rnn_tutorial/simple_rnn.ipynb)| Implement recurrent neural networks in Theano. |
100
-
|[theano-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/theano_mlp/theano_mlp.ipynb)| Implement multilayer perceptrons in Theano. |
101
-
|[deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb)| Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
114
+
|[tsf-fully-connected](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/2_fullyconnected.ipynb)| Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. |
115
+
|[tsf-regularization](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/3_regularization.ipynb)| Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. |
116
+
|[tsf-convolutions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/4_convolutions.ipynb)| Create convolutional neural networks in TensorFlow. |
117
+
|[tsf-word2vec](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/5_word2vec.ipynb)| Train a skip-gram model over Text8 data in TensorFlow. |
118
+
|[tsf-lstm](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-exercises/6_lstm.ipynb)| Train a LSTM character model over Text8 data in TensorFlow. |
|[theano-intro](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/intro_theano.ipynb)| Intro to Theano, which allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation. |
130
+
|[theano-scan](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/scan_tutorial/scan_tutorial.ipynb)| Learn scans, a mechanism to perform loops in a Theano graph. |
131
+
|[theano-logistic](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/intro_theano/logistic_regression.ipynb)| Implement logistic regression in Theano. |
132
+
|[theano-rnn](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/rnn_tutorial/simple_rnn.ipynb)| Implement recurrent neural networks in Theano. |
133
+
|[theano-mlp](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/theano-tutorial/theano_mlp/theano_mlp.ipynb)| Implement multilayer perceptrons in Theano. |
|[deep-dream](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/deep-dream/dream.ipynb)| Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |
0 commit comments