|
16 | 16 | "Reference: [Algorithmia Documentation](http://docs.algorithmia.com/)\n",
|
17 | 17 | "\n",
|
18 | 18 | "Table of Contents:\n",
|
19 |
| - "1. Authentication\n", |
20 |
| - "2. Face Detection\n", |
21 |
| - "3. Content Summarizer\n", |
22 |
| - "4. Latent Dirichlet Allocation\n", |
23 |
| - "5. Optical Character Recognition" |
| 19 | + "1. Installation\n", |
| 20 | + "2. Authentication\n", |
| 21 | + "3. Face Detection\n", |
| 22 | + "4. Content Summarizer\n", |
| 23 | + "5. Latent Dirichlet Allocation\n", |
| 24 | + "6. Optical Character Recognition" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "metadata": {}, |
| 30 | + "source": [ |
| 31 | + "# 1. Installation\n", |
| 32 | + "\n", |
| 33 | + "You need to have the `algorithmia` package (version 0.9.3) installed for this notebook.\n", |
| 34 | + "\n", |
| 35 | + "You can install the package using the pip package manager:" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": null, |
| 41 | + "metadata": { |
| 42 | + "collapsed": true |
| 43 | + }, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "pip install algorithmia==0.9.3" |
24 | 47 | ]
|
25 | 48 | },
|
26 | 49 | {
|
|
41 | 64 | "cell_type": "markdown",
|
42 | 65 | "metadata": {},
|
43 | 66 | "source": [
|
44 |
| - "# 1. Authentication\n", |
| 67 | + "# 2. Authentication\n", |
45 | 68 | "\n",
|
46 | 69 | "You only need your Algorithmia API Key to run the following commands."
|
47 | 70 | ]
|
|
63 | 86 | "cell_type": "markdown",
|
64 | 87 | "metadata": {},
|
65 | 88 | "source": [
|
66 |
| - "# 2. Face Detection\n", |
| 89 | + "# 3. Face Detection\n", |
67 | 90 | "\n",
|
68 | 91 | "Uses a pretrained model to detect faces in a given image.\n",
|
69 | 92 | "\n",
|
|
167 | 190 | "cell_type": "markdown",
|
168 | 191 | "metadata": {},
|
169 | 192 | "source": [
|
170 |
| - "# 3. Content Summarizer\n", |
| 193 | + "# 4. Content Summarizer\n", |
171 | 194 | "\n",
|
172 | 195 | "SummarAI is an advanced content summarizer with the option of generating context-controlled summaries. It is based on award-winning patented methods related to artificial intelligence and vector space developed at Lawrence Berkeley National Laboratory."
|
173 | 196 | ]
|
|
225 | 248 | "cell_type": "markdown",
|
226 | 249 | "metadata": {},
|
227 | 250 | "source": [
|
228 |
| - "# 4. Latent Dirichlet Allocation\n", |
| 251 | + "# 5. Latent Dirichlet Allocation\n", |
229 | 252 | "\n",
|
230 | 253 | "This algorithm takes a group of documents (anything that is made of up text), and returns a number of topics (which are made up of a number of words) most relevant to these documents.\n",
|
231 | 254 | "\n",
|
|
325 | 348 | "cell_type": "markdown",
|
326 | 349 | "metadata": {},
|
327 | 350 | "source": [
|
328 |
| - "# 5. Optical Character Recognition\n", |
| 351 | + "# 6. Optical Character Recognition\n", |
329 | 352 | "\n",
|
330 | 353 | "Recognize text in your images.\n",
|
331 | 354 | "\n",
|
|
416 | 439 | "name": "python",
|
417 | 440 | "nbconvert_exporter": "python",
|
418 | 441 | "pygments_lexer": "ipython2",
|
419 |
| - "version": "2.7.10" |
| 442 | + "version": "2.7.11" |
420 | 443 | }
|
421 | 444 | },
|
422 | 445 | "nbformat": 4,
|
|
0 commit comments