Skip to content

Commit 894227f

Browse files
committed
fix: update
1 parent 6af704e commit 894227f

File tree

2 files changed

+30
-2
lines changed

2 files changed

+30
-2
lines changed

solution/3100-3199/3134.Find the Median of the Uniqueness Array/README.md

Lines changed: 15 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -84,7 +84,21 @@ tags:
8484

8585
<!-- solution:start -->
8686

87-
### 方法一
87+
### 方法一:二分查找 + 双指针
88+
89+
我们记数组 $\textit{nums}$ 的长度为 $n$,那么唯一性数组的长度为 $m = \frac{(1 + n) \times n}{2}$,而唯一性数组的中位数就是这 $m$ 个数中的第 $\frac{m + 1}{2}$ 小的数字。
90+
91+
考虑唯一性数组中,有多少个数小于等于 $x$。随着 $x$ 的增大,只会有越来越多的数小于等于 $x$。这存在着单调性,因此,我们可以二分枚举 $x$,找到第一个 $x$,满足唯一性数组中小于等于 $x$ 的数的个数大于等于 $\frac{m + 1}{2}$,这个 $x$ 就是唯一性数组的中位数。
92+
93+
我们定义二分查找的左边界 $l = 0$,右边界 $r = n$,然后进行二分查找,对于每个 $\textit{mid}$,我们检查唯一性数组中小于等于 $\textit{mid}$ 的数的个数是否大于等于 $\frac{m + 1}{2}$。我们通过函数 $\text{check}(mx)$ 来实现这一点。
94+
95+
函数 $\text{check}(mx)$ 的实现思路如下:
96+
97+
由于子数组越长,不同元素的个数越多,因此,我们可以利用双指针维护一个滑动窗口,使得窗口中的子数组的不同元素的个数不超过 $mx$。具体地,我们维护一个哈希表 $\textit{cnt}$,$\textit{cnt}[x]$ 表示窗口中元素 $x$ 的个数。我们使用两个指针 $l$ 和 $r$,其中 $l$ 表示窗口的左边界,而 $r$ 表示窗口的右边界。初始时 $l = r = 0$。
98+
99+
我们枚举 $r$,对于每个 $r$,我们将 $\textit{nums}[r]$ 加入窗口中,并更新 $\textit{cnt}[\textit{nums}[r]]$。如果窗口中的不同元素的个数超过了 $mx$,我们需要将 $l$ 右移,直到窗口中的不同元素的个数不超过 $mx$。此时,右端点为 $r$,而左端点为 $[l,..r]$ 的子数组都是满足条件的,一共有 $r - l + 1$ 个子数组。我们将这个数量累加到 $k$ 中,如果 $k$ 大于等于 $\frac{m + 1}{2}$,那么说明唯一性数组中小于等于 $\textit{mid}$ 的数的个数大于等于 $\frac{m + 1}{2}$,我们返回 $\text{true}$,否则返回 $\text{false}$。
100+
101+
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $\textit{nums}$ 的长度。
88102

89103
<!-- tabs:start -->
90104

solution/3100-3199/3134.Find the Median of the Uniqueness Array/README_EN.md

Lines changed: 15 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,21 @@ tags:
8080

8181
<!-- solution:start -->
8282

83-
### Solution 1
83+
### Solution 1: Binary Search + Two Pointers
84+
85+
Let the length of the array $\textit{nums}$ be $n$. The length of the uniqueness array is $m = \frac{(1 + n) \times n}{2}$, and the median of the uniqueness array is the $\frac{m + 1}{2}$-th smallest number among these $m$ numbers.
86+
87+
Consider how many numbers in the uniqueness array are less than or equal to $x$. As $x$ increases, there will be more and more numbers less than or equal to $x$. This property is monotonic, so we can use binary search to enumerate $x$ and find the first $x$ such that the number of elements in the uniqueness array less than or equal to $x$ is greater than or equal to $\frac{m + 1}{2}$. This $x$ is the median of the uniqueness array.
88+
89+
We define the left boundary of the binary search as $l = 0$ and the right boundary as $r = n$. Then we perform binary search. For each $\textit{mid}$, we check whether the number of elements in the uniqueness array less than or equal to $\textit{mid}$ is greater than or equal to $\frac{m + 1}{2}$. We achieve this through the function $\text{check}(mx)$.
90+
91+
The implementation idea of the function $\text{check}(mx)$ is as follows:
92+
93+
Since the longer the subarray, the more different elements it contains, we can use two pointers to maintain a sliding window such that the number of different elements in the window does not exceed $mx$. Specifically, we maintain a hash table $\textit{cnt}$, where $\textit{cnt}[x]$ represents the number of occurrences of element $x$ in the window. We use two pointers $l$ and $r$, where $l$ represents the left boundary of the window and $r$ represents the right boundary. Initially, $l = r = 0$.
94+
95+
We enumerate $r$. For each $r$, we add $\textit{nums}[r]$ to the window and update $\textit{cnt}[\textit{nums}[r]]$. If the number of different elements in the window exceeds $mx$, we need to move $l$ to the right until the number of different elements in the window does not exceed $mx$. At this point, the subarrays with the right endpoint $r$ and left endpoints in the range $[l, .., r]$ all meet the condition, and there are $r - l + 1$ such subarrays. We accumulate this count into $k$. If $k$ is greater than or equal to $\frac{m + 1}{2}$, it means that the number of elements in the uniqueness array less than or equal to $\textit{mid}$ is greater than or equal to $\frac{m + 1}{2}$, and we return $\text{true}$; otherwise, we return $\text{false}$.
96+
97+
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $\textit{nums}$.
8498

8599
<!-- tabs:start -->
86100

0 commit comments

Comments
 (0)