diff --git a/solution/0800-0899/0838.Push Dominoes/README.md b/solution/0800-0899/0838.Push Dominoes/README.md index e6f79c7abba0b..f9155dcaa5a0c 100644 --- a/solution/0800-0899/0838.Push Dominoes/README.md +++ b/solution/0800-0899/0838.Push Dominoes/README.md @@ -29,9 +29,9 @@ tags:

给你一个字符串 dominoes 表示这一行多米诺骨牌的初始状态,其中:

返回表示最终状态的字符串。

@@ -57,9 +57,9 @@ tags:

提示:

@@ -68,7 +68,30 @@ tags: -### 方法一 +### 方法一:多源 BFS + +把所有初始受到推力的骨牌(`L` 或 `R`)视作 **源点**,它们会同时向外扩散各自的力。用队列按时间层级(0, 1, 2 …)进行 BFS: + +我们定义 $\text{time[i]}$ 记录第 *i* 张骨牌第一次受力的时刻,`-1` 表示尚未受力,定义 $\text{force[i]}$ 是一个长度可变的列表,存放该骨牌在同一时刻收到的方向(`'L'`、`'R'`)。初始时把所有 `L/R` 的下标压入队列,并将它们的时间置 0。 + +当弹出下标 *i* 时,若 $\text{force[i]}$ 只有一个方向,骨牌就会倒向该方向 $f$。设下一张骨牌下标为 + +$$ +j = +\begin{cases} +i - 1, & f = L,\\ +i + 1, & f = R. +\end{cases} +$$ + +若 $0 \leq j < n$: + +- 若 $\text{time[j]}=-1$,说明 *j* 从未受力,记录 $\text{time[j]}=\text{time[i]}+1$ 并入队,同时把 $f$ 写入 $\text{force[j]}$。 +- 若 $\text{time[j]}=\text{time[i]}+1$,说明它在同一“下一刻”已受过另一股力,此时只把 $f$ 追加到 $\text{force[j]}$,形成对冲;后续因 `len(force[j])==2`,它将保持竖直。 + +队列清空后,所有 $\text{force[i]}$ 长度为 1 的位置倒向对应方向;长度为 2 的位置保持 `.`。最终将字符数组拼接为答案。 + +时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是骨牌的数量。 @@ -242,44 +265,40 @@ func pushDominoes(dominoes string) string { ```ts function pushDominoes(dominoes: string): string { const n = dominoes.length; - const map = { - L: -1, - R: 1, - '.': 0, - }; - let ans = new Array(n).fill(0); - let visited = new Array(n).fill(0); - let queue = []; - let depth = 1; + const q: number[] = []; + const time: number[] = Array(n).fill(-1); + const force: string[][] = Array.from({ length: n }, () => []); + for (let i = 0; i < n; i++) { - let cur = map[dominoes.charAt(i)]; - if (cur) { - queue.push(i); - visited[i] = depth; - ans[i] = cur; + const f = dominoes[i]; + if (f !== '.') { + q.push(i); + time[i] = 0; + force[i].push(f); } } - while (queue.length) { - depth++; - let nextLevel = []; - for (let i of queue) { - const dx = ans[i]; - let x = i + dx; - if (x >= 0 && x < n && [0, depth].includes(visited[x])) { - ans[x] += dx; - visited[x] = depth; - nextLevel.push(x); + + const ans: string[] = Array(n).fill('.'); + let head = 0; + while (head < q.length) { + const i = q[head++]; + if (force[i].length === 1) { + const f = force[i][0]; + ans[i] = f; + const j = f === 'L' ? i - 1 : i + 1; + if (j >= 0 && j < n) { + const t = time[i]; + if (time[j] === -1) { + q.push(j); + time[j] = t + 1; + force[j].push(f); + } else if (time[j] === t + 1) { + force[j].push(f); + } } } - queue = nextLevel; } - return ans - .map(d => { - if (!d) return '.'; - else if (d < 0) return 'L'; - else return 'R'; - }) - .join(''); + return ans.join(''); } ``` diff --git a/solution/0800-0899/0838.Push Dominoes/README_EN.md b/solution/0800-0899/0838.Push Dominoes/README_EN.md index ce232677d18a7..d41fed93a68d5 100644 --- a/solution/0800-0899/0838.Push Dominoes/README_EN.md +++ b/solution/0800-0899/0838.Push Dominoes/README_EN.md @@ -29,9 +29,9 @@ tags:

You are given a string dominoes representing the initial state where:

Return a string representing the final state.

@@ -56,9 +56,9 @@ tags:

Constraints:

@@ -67,7 +67,30 @@ tags: -### Solution 1 +### Solution 1: Multi-Source BFS + +Treat all initially pushed dominoes (`L` or `R`) as **sources**, which simultaneously propagate their forces outward. Use a queue to perform BFS layer by layer (0, 1, 2, ...): + +We define $\text{time[i]}$ to record the first moment when the _i_-th domino is affected by a force, with `-1` indicating it has not been affected yet. We also define $\text{force[i]}$ as a variable-length list that stores the directions (`'L'`, `'R'`) of forces acting on the domino at the same moment. Initially, push all indices of `L/R` dominoes into the queue and set their `time` to 0. + +When dequeuing index _i_, if $\text{force[i]}$ contains only one direction, the domino will fall in that direction $f$. Let the index of the next domino be: + +$$ +j = +\begin{cases} +i - 1, & f = L,\\ +i + 1, & f = R. +\end{cases} +$$ + +If $0 \leq j < n$: + +- If $\text{time[j]} = -1$, it means _j_ has not been affected yet. Record $\text{time[j]} = \text{time[i]} + 1$, enqueue it, and append $f$ to $\text{force[j]}$. +- If $\text{time[j]} = \text{time[i]} + 1$, it means _j_ has already been affected by another force at the same "next moment." In this case, append $f$ to $\text{force[j]}$, causing a standoff. Subsequently, since $\text{len(force[j])} = 2$, it will remain upright. + +After the queue is emptied, all positions where $\text{force[i]}$ has a length of 1 will fall in the corresponding direction, while positions with a length of 2 will remain as `.`. Finally, concatenate the character array to form the answer. + +The complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the number of dominoes. @@ -241,44 +264,40 @@ func pushDominoes(dominoes string) string { ```ts function pushDominoes(dominoes: string): string { const n = dominoes.length; - const map = { - L: -1, - R: 1, - '.': 0, - }; - let ans = new Array(n).fill(0); - let visited = new Array(n).fill(0); - let queue = []; - let depth = 1; + const q: number[] = []; + const time: number[] = Array(n).fill(-1); + const force: string[][] = Array.from({ length: n }, () => []); + for (let i = 0; i < n; i++) { - let cur = map[dominoes.charAt(i)]; - if (cur) { - queue.push(i); - visited[i] = depth; - ans[i] = cur; + const f = dominoes[i]; + if (f !== '.') { + q.push(i); + time[i] = 0; + force[i].push(f); } } - while (queue.length) { - depth++; - let nextLevel = []; - for (let i of queue) { - const dx = ans[i]; - let x = i + dx; - if (x >= 0 && x < n && [0, depth].includes(visited[x])) { - ans[x] += dx; - visited[x] = depth; - nextLevel.push(x); + + const ans: string[] = Array(n).fill('.'); + let head = 0; + while (head < q.length) { + const i = q[head++]; + if (force[i].length === 1) { + const f = force[i][0]; + ans[i] = f; + const j = f === 'L' ? i - 1 : i + 1; + if (j >= 0 && j < n) { + const t = time[i]; + if (time[j] === -1) { + q.push(j); + time[j] = t + 1; + force[j].push(f); + } else if (time[j] === t + 1) { + force[j].push(f); + } } } - queue = nextLevel; } - return ans - .map(d => { - if (!d) return '.'; - else if (d < 0) return 'L'; - else return 'R'; - }) - .join(''); + return ans.join(''); } ``` diff --git a/solution/0800-0899/0838.Push Dominoes/Solution.ts b/solution/0800-0899/0838.Push Dominoes/Solution.ts index d9e8412c5d062..0b912d31ca203 100644 --- a/solution/0800-0899/0838.Push Dominoes/Solution.ts +++ b/solution/0800-0899/0838.Push Dominoes/Solution.ts @@ -1,41 +1,37 @@ function pushDominoes(dominoes: string): string { const n = dominoes.length; - const map = { - L: -1, - R: 1, - '.': 0, - }; - let ans = new Array(n).fill(0); - let visited = new Array(n).fill(0); - let queue = []; - let depth = 1; + const q: number[] = []; + const time: number[] = Array(n).fill(-1); + const force: string[][] = Array.from({ length: n }, () => []); + for (let i = 0; i < n; i++) { - let cur = map[dominoes.charAt(i)]; - if (cur) { - queue.push(i); - visited[i] = depth; - ans[i] = cur; + const f = dominoes[i]; + if (f !== '.') { + q.push(i); + time[i] = 0; + force[i].push(f); } } - while (queue.length) { - depth++; - let nextLevel = []; - for (let i of queue) { - const dx = ans[i]; - let x = i + dx; - if (x >= 0 && x < n && [0, depth].includes(visited[x])) { - ans[x] += dx; - visited[x] = depth; - nextLevel.push(x); + + const ans: string[] = Array(n).fill('.'); + let head = 0; + while (head < q.length) { + const i = q[head++]; + if (force[i].length === 1) { + const f = force[i][0]; + ans[i] = f; + const j = f === 'L' ? i - 1 : i + 1; + if (j >= 0 && j < n) { + const t = time[i]; + if (time[j] === -1) { + q.push(j); + time[j] = t + 1; + force[j].push(f); + } else if (time[j] === t + 1) { + force[j].push(f); + } } } - queue = nextLevel; } - return ans - .map(d => { - if (!d) return '.'; - else if (d < 0) return 'L'; - else return 'R'; - }) - .join(''); + return ans.join(''); }