|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "dotnet_interactive": { |
| 7 | + "language": "csharp" |
| 8 | + } |
| 9 | + }, |
| 10 | + "source": [ |
| 11 | + "Hyper Parameter Optimization, aka HPO, is to find a well-performed hyper-parameter on a given search space. The most well-known HPO is grid-search but it only performs well on tiny search space. To resolve hpo on large search space, a lot of algorithms are applied. For example, bayesian optimization is designed for optimizing expensive, black box functions which is very suitable for hpo task. Cost-Frugal optimization on the other hand, taking the training cost into consideration and is aimed to find a better solution within limited cost.\n", |
| 12 | + "\n", |
| 13 | + "One thing to note is even though hpo is a very activate research field and a lot of algorithms have been invented in the last few years, there's still lacking a general, all-in-one hpo alogrithm that performs well on all datasets. So the best way to find out the right hpo algorithm is always try different hpos on your dataset.\n", |
| 14 | + "\n", |
| 15 | + "AutoML.Net provides several hpos for you to try out, and you can configure and replace different hpos easily for `AutoMLExperiment` via setting different tuner. In this notebook, we'll go through the following topics.\n", |
| 16 | + "- Available tuners in AutoML.Net, and how to use it.\n", |
| 17 | + "- Comparing the performance for those tuners." |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "code", |
| 22 | + "execution_count": null, |
| 23 | + "metadata": { |
| 24 | + "dotnet_interactive": { |
| 25 | + "language": "csharp" |
| 26 | + }, |
| 27 | + "vscode": { |
| 28 | + "languageId": "dotnet-interactive.csharp" |
| 29 | + } |
| 30 | + }, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "// install dependencies and import using statement\n", |
| 34 | + "#i \"nuget:https://pkgs.dev.azure.com/dnceng/public/_packaging/MachineLearning/nuget/v3/index.json\"\n", |
| 35 | + "#r \"nuget: Plotly.NET.Interactive, 3.0.2\"\n", |
| 36 | + "#r \"nuget: Plotly.NET.CSharp, 0.0.1\"\n", |
| 37 | + "\n", |
| 38 | + "// make sure you are using Microsoft.ML.AutoML later than 0.20.0.\n", |
| 39 | + "#r \"nuget: Microsoft.ML.AutoML, 0.20.0-preview.22514.1\"\n", |
| 40 | + "#r \"nuget: Microsoft.Data.Analysis, 0.20.0-preview.22514.1\"\n", |
| 41 | + "// Import usings.\n", |
| 42 | + "using System;\n", |
| 43 | + "using System.IO;\n", |
| 44 | + "using System.Net;\n", |
| 45 | + "using Microsoft.ML;\n", |
| 46 | + "using Microsoft.ML.AutoML;\n", |
| 47 | + "using Microsoft.ML.Data;\n", |
| 48 | + "using Microsoft.ML.SearchSpace;\n", |
| 49 | + "using Newtonsoft.Json;\n", |
| 50 | + "using Microsoft.ML.AutoML.CodeGen;\n", |
| 51 | + "using Microsoft.Data.Analysis;\n", |
| 52 | + "using Microsoft.ML.SearchSpace.Option;" |
| 53 | + ] |
| 54 | + }, |
| 55 | + { |
| 56 | + "cell_type": "markdown", |
| 57 | + "metadata": {}, |
| 58 | + "source": [ |
| 59 | + "### Available Tuners in AutoML.Net\n", |
| 60 | + "For now, those tuners are available in AutoML.Net\n", |
| 61 | + "- CostFrugalTuner: low-cost HPO algorithm, this is an implementation of [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571).\n", |
| 62 | + "- SMAC: Bayesian optimziation using random forest as regression model.\n", |
| 63 | + "- EciCostFrugalTuner: CostFrugalTuner for hierarchical search space. This will be used as default tuner if `AutoMLExperiment.SetPipeline` get called.\n", |
| 64 | + "- GridSearch\n", |
| 65 | + "- RandomSearch\n", |
| 66 | + "\n", |
| 67 | + "The following section shows how to use different tuner in `AutoMLExperiment`." |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": null, |
| 73 | + "metadata": { |
| 74 | + "dotnet_interactive": { |
| 75 | + "language": "csharp" |
| 76 | + }, |
| 77 | + "vscode": { |
| 78 | + "languageId": "dotnet-interactive.csharp" |
| 79 | + } |
| 80 | + }, |
| 81 | + "outputs": [], |
| 82 | + "source": [ |
| 83 | + "var context = new MLContext(1);\n", |
| 84 | + "var experiment = context.Auto().CreateExperiment();\n", |
| 85 | + "\n", |
| 86 | + "// use EciCostFrugalTuner\n", |
| 87 | + "// Note: EciCostFrugalTuner will be set as default tuner if you call \n", |
| 88 | + "// experiment.SetPipeline()\n", |
| 89 | + "experiment.SetEciCostFrugalTuner();\n", |
| 90 | + "\n", |
| 91 | + "// use CostFrugalTuner\n", |
| 92 | + "experiment.SetCostFrugalTuner();\n", |
| 93 | + "\n", |
| 94 | + "// use SMAC\n", |
| 95 | + "experiment.SetSmacTuner();\n", |
| 96 | + "\n", |
| 97 | + "// use GridSearch\n", |
| 98 | + "experiment.SetGridSearchTuner(step: 10);\n", |
| 99 | + "\n", |
| 100 | + "// use RandomSearch\n", |
| 101 | + "experiment.SetRandomSearchTuner(seed: 1);" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "markdown", |
| 106 | + "metadata": {}, |
| 107 | + "source": [ |
| 108 | + "### Compare GridSearch and EciCostFrugal on titanic dataset\n", |
| 109 | + "\n", |
| 110 | + "The following section shows how different hpo effect automl performance, by comparing metric trend from GridSearch and EciCostFrugal on titanic dataset." |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "markdown", |
| 115 | + "metadata": { |
| 116 | + "dotnet_interactive": { |
| 117 | + "language": "csharp" |
| 118 | + } |
| 119 | + }, |
| 120 | + "source": [ |
| 121 | + "## Download titanic if necessary" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "code", |
| 126 | + "execution_count": null, |
| 127 | + "metadata": { |
| 128 | + "dotnet_interactive": { |
| 129 | + "language": "csharp" |
| 130 | + }, |
| 131 | + "vscode": { |
| 132 | + "languageId": "dotnet-interactive.csharp" |
| 133 | + } |
| 134 | + }, |
| 135 | + "outputs": [], |
| 136 | + "source": [ |
| 137 | + "string EnsureDataSetDownloaded(string fileName)\n", |
| 138 | + "{\n", |
| 139 | + "\n", |
| 140 | + "\t// This is the path if the repo has been checked out.\n", |
| 141 | + "\tvar filePath = Path.Combine(Directory.GetCurrentDirectory(),\"data\", fileName);\n", |
| 142 | + "\n", |
| 143 | + "\tif (!File.Exists(filePath))\n", |
| 144 | + "\t{\n", |
| 145 | + "\t\t// This is the path if the file has already been downloaded.\n", |
| 146 | + "\t\tfilePath = Path.Combine(Directory.GetCurrentDirectory(), fileName);\n", |
| 147 | + "\t}\n", |
| 148 | + "\n", |
| 149 | + "\tif (!File.Exists(filePath))\n", |
| 150 | + "\t{\n", |
| 151 | + "\t\tusing (var client = new WebClient())\n", |
| 152 | + "\t\t{\n", |
| 153 | + "\t\t\tclient.DownloadFile($\"https://raw.githubusercontent.com/dotnet/csharp-notebooks/main/machine-learning/data/{fileName}\", filePath);\n", |
| 154 | + "\t\t}\n", |
| 155 | + "\t\tConsole.WriteLine($\"Downloaded {fileName} to : {filePath}\");\n", |
| 156 | + "\t}\n", |
| 157 | + "\telse\n", |
| 158 | + "\t{\n", |
| 159 | + "\t\tConsole.WriteLine($\"{fileName} found here: {filePath}\");\n", |
| 160 | + "\t}\n", |
| 161 | + "\n", |
| 162 | + "\treturn filePath;\n", |
| 163 | + "}" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "markdown", |
| 168 | + "metadata": {}, |
| 169 | + "source": [ |
| 170 | + "### Load Dataset" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "code", |
| 175 | + "execution_count": null, |
| 176 | + "metadata": { |
| 177 | + "dotnet_interactive": { |
| 178 | + "language": "csharp" |
| 179 | + }, |
| 180 | + "vscode": { |
| 181 | + "languageId": "dotnet-interactive.csharp" |
| 182 | + } |
| 183 | + }, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "var trainDataPath = EnsureDataSetDownloaded(\"titanic-train.csv\");\n", |
| 187 | + "var df = DataFrame.LoadCsv(trainDataPath);\n", |
| 188 | + "\n", |
| 189 | + "var trainTestSplit = context.Data.TrainTestSplit(df, 0.1);\n", |
| 190 | + "df.Head(10)" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "markdown", |
| 195 | + "metadata": {}, |
| 196 | + "source": [ |
| 197 | + "### Construct pipeline and AutoMLExperiment" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": null, |
| 203 | + "metadata": { |
| 204 | + "dotnet_interactive": { |
| 205 | + "language": "csharp" |
| 206 | + }, |
| 207 | + "vscode": { |
| 208 | + "languageId": "dotnet-interactive.csharp" |
| 209 | + } |
| 210 | + }, |
| 211 | + "outputs": [], |
| 212 | + "source": [ |
| 213 | + "var pipeline = context.Auto().Featurizer(df, excludeColumns: new[]{\"Survived\"})\n", |
| 214 | + " .Append(context.Transforms.Conversion.ConvertType(\"Survived\", \"Survived\", DataKind.Boolean))\n", |
| 215 | + "\t\t\t\t\t .Append(context.Auto().BinaryClassification(labelColumnName: \"Survived\"));\n", |
| 216 | + "// Configure AutoML\n", |
| 217 | + "var monitor = new NotebookMonitor(pipeline);\n", |
| 218 | + "\n", |
| 219 | + "var experiment = context.Auto().CreateExperiment()\n", |
| 220 | + " .SetPipeline(pipeline)\n", |
| 221 | + " .SetTrainingTimeInSeconds(10)\n", |
| 222 | + " .SetDataset(trainTestSplit.TrainSet, trainTestSplit.TestSet)\n", |
| 223 | + " .SetBinaryClassificationMetric(BinaryClassificationMetric.Accuracy, \"Survived\", \"PredictedLabel\")\n", |
| 224 | + " .SetMonitor(monitor);\n" |
| 225 | + ] |
| 226 | + }, |
| 227 | + { |
| 228 | + "cell_type": "markdown", |
| 229 | + "metadata": {}, |
| 230 | + "source": [ |
| 231 | + "### Run HPO using GridSearch" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "code", |
| 236 | + "execution_count": null, |
| 237 | + "metadata": { |
| 238 | + "dotnet_interactive": { |
| 239 | + "language": "csharp" |
| 240 | + }, |
| 241 | + "vscode": { |
| 242 | + "languageId": "dotnet-interactive.csharp" |
| 243 | + } |
| 244 | + }, |
| 245 | + "outputs": [], |
| 246 | + "source": [ |
| 247 | + "experiment.SetGridSearchTuner(step: 10);\n", |
| 248 | + "await experiment.RunAsync();\n", |
| 249 | + "var gridSearchTrial = monitor.CompletedTrials.ToArray();\n", |
| 250 | + "monitor.CompletedTrials.Clear();" |
| 251 | + ] |
| 252 | + }, |
| 253 | + { |
| 254 | + "cell_type": "markdown", |
| 255 | + "metadata": {}, |
| 256 | + "source": [ |
| 257 | + "### Run HPO using EciCostFrugal" |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "code", |
| 262 | + "execution_count": null, |
| 263 | + "metadata": { |
| 264 | + "dotnet_interactive": { |
| 265 | + "language": "csharp" |
| 266 | + }, |
| 267 | + "vscode": { |
| 268 | + "languageId": "dotnet-interactive.csharp" |
| 269 | + } |
| 270 | + }, |
| 271 | + "outputs": [], |
| 272 | + "source": [ |
| 273 | + "experiment.SetEciCostFrugalTuner();\n", |
| 274 | + "await experiment.RunAsync();\n", |
| 275 | + "var eciSearchTrials = monitor.CompletedTrials.ToArray();\n", |
| 276 | + "monitor.CompletedTrials.Clear();" |
| 277 | + ] |
| 278 | + }, |
| 279 | + { |
| 280 | + "cell_type": "markdown", |
| 281 | + "metadata": {}, |
| 282 | + "source": [ |
| 283 | + "### Compare HPO performace among GridSearch, EciCostFrugal" |
| 284 | + ] |
| 285 | + }, |
| 286 | + { |
| 287 | + "cell_type": "code", |
| 288 | + "execution_count": null, |
| 289 | + "metadata": { |
| 290 | + "dotnet_interactive": { |
| 291 | + "language": "csharp" |
| 292 | + }, |
| 293 | + "vscode": { |
| 294 | + "languageId": "dotnet-interactive.csharp" |
| 295 | + } |
| 296 | + }, |
| 297 | + "outputs": [], |
| 298 | + "source": [ |
| 299 | + "using Plotly.NET;\n", |
| 300 | + "\n", |
| 301 | + "var gridSearchChart = Chart2D.Chart.Line<int, float, string>(gridSearchTrial.Select(t => t.TrialSettings.TrialId), gridSearchTrial.Select(t => (float)t.Metric), Name: \"grid_search\");\n", |
| 302 | + "var eciCfoSearchChart = Chart2D.Chart.Line<int, float, string>(eciSearchTrials.Select(t => t.TrialSettings.TrialId), eciSearchTrials.Select(t => (float)t.Metric), Name: \"eci_cfo\");\n", |
| 303 | + "var combineChart = Chart.Combine(new[]{ gridSearchChart, eciCfoSearchChart});\n", |
| 304 | + "combineChart.Display()" |
| 305 | + ] |
| 306 | + } |
| 307 | + ], |
| 308 | + "metadata": { |
| 309 | + "kernelspec": { |
| 310 | + "display_name": ".NET (C#)", |
| 311 | + "language": "C#", |
| 312 | + "name": ".net-csharp" |
| 313 | + }, |
| 314 | + "language_info": { |
| 315 | + "file_extension": ".cs", |
| 316 | + "mimetype": "text/x-csharp", |
| 317 | + "name": "C#", |
| 318 | + "pygments_lexer": "csharp", |
| 319 | + "version": "9.0" |
| 320 | + }, |
| 321 | + "orig_nbformat": 4 |
| 322 | + }, |
| 323 | + "nbformat": 4, |
| 324 | + "nbformat_minor": 2 |
| 325 | +} |
0 commit comments