Skip to content

Commit ab4de36

Browse files
committed
use id instead of range
1 parent 5a07c05 commit ab4de36

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

docs/ai/quickstarts/build-vector-search-app.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -154,13 +154,13 @@ Complete the following steps to create a .NET console app that can:
154154
155155
1. In the **Program.cs** file, add the following code to create a data set that describes a collection of cloud services:
156156
157-
:::code language="csharp" source="snippets/chat-with-data/azure-openai/program.cs" range="8-46":::
157+
:::code language="csharp" source="snippets/chat-with-data/azure-openai/program.cs" id="DataSet":::
158158
159159
1. Create and configure an `IEmbeddingGenerator` implementation to send requests to an embedding AI model:
160160
161161
:::zone target="docs" pivot="azure-openai"
162162
163-
:::code language="csharp" source="snippets/chat-with-data/azure-openai/program.cs" range="48-58":::
163+
:::code language="csharp" source="snippets/chat-with-data/azure-openai/program.cs" id="EMbeddingGen":::
164164
165165
> [!NOTE]
166166
> <xref:Azure.Identity.DefaultAzureCredential> searches for authentication credentials from your local tooling. If you aren't using the `azd` template to provision the Azure OpenAI resource, you'll need to assign the `Azure AI Developer` role to the account you used to sign in to Visual Studio or the Azure CLI. For more information, see [Authenticate to Azure AI services with .NET](../azure-ai-services-authentication.md).
@@ -175,13 +175,13 @@ Complete the following steps to create a .NET console app that can:
175175
176176
1. Create and populate a vector store with the cloud service data. Use the `IEmbeddingGenerator` implementation to create and assign an embedding vector for each record in the cloud service data:
177177
178-
:::code language="csharp" source="snippets/chat-with-data/azure-openai/program.cs" range="61-70":::
178+
:::code language="csharp" source="snippets/chat-with-data/azure-openai/program.cs" id="VectorStore":::
179179
180180
The embeddings are numerical representations of the semantic meaning for each data record, which makes them compatible with vector search features.
181181
182182
1. Create an embedding for a search query and use it to perform a vector search on the vector store:
183183
184-
:::code language="csharp" source="snippets/chat-with-data/azure-openai/program.cs" range="72-88":::
184+
:::code language="csharp" source="snippets/chat-with-data/azure-openai/program.cs" id="Search":::
185185
186186
1. Use the `dotnet run` command to run the app:
187187

0 commit comments

Comments
 (0)