1616from sklearn .svm import SVC
1717
1818from instance_selection import ENN
19+
1920from .utils import split
2021
2122
@@ -31,19 +32,19 @@ class STDPNF:
3132 """
3233
3334 def __init__ (
34- self ,
35- dc = None ,
36- distance_metric = "euclidean" ,
37- k = 3 ,
38- gauss_cutoff = True ,
39- percent = 2.0 ,
40- density_threshold = None ,
41- distance_threshold = None ,
42- anormal = True ,
43- filtering = False ,
44- classifier = None ,
45- classifier_params = None ,
46- filter_method = None ,
35+ self ,
36+ dc = None ,
37+ distance_metric = "euclidean" ,
38+ k = 3 ,
39+ gauss_cutoff = True ,
40+ percent = 2.0 ,
41+ density_threshold = None ,
42+ distance_threshold = None ,
43+ anormal = True ,
44+ filtering = False ,
45+ classifier = None ,
46+ classifier_params = None ,
47+ filter_method = None ,
4748 ):
4849 """Semi Supervised Algorithm based on Density Peaks."""
4950 self .dc = dc
@@ -121,8 +122,7 @@ def __auto_select_dc(self):
121122
122123 while True :
123124 nneighs = (
124- sum ([1 for v in self .distances .values () if
125- v < dc ]) / self .n_id ** 2
125+ sum ([1 for v in self .distances .values () if v < dc ]) / self .n_id ** 2
126126 )
127127 if 0.01 <= nneighs <= 0.02 :
128128 break
@@ -476,7 +476,7 @@ def _fit_stdpnf(self):
476476 while count <= max (self .order .values ()):
477477 unlabeled_rows = self .structure_stdnpf .loc [
478478 self .structure_stdnpf ["label" ] == - 1
479- ].index .to_list ()
479+ ].index .to_list ()
480480 unlabeled_indexes = []
481481 for row in unlabeled_rows :
482482 if self .order [row ] == count :
@@ -492,7 +492,7 @@ def _fit_stdpnf(self):
492492 else :
493493 labeled_data = self .structure_stdnpf .loc [
494494 self .structure_stdnpf ["label" ] != - 1
495- ]
495+ ]
496496 complete = labeled_data ["sample" ]
497497 complete_y = labeled_data ["label" ]
498498
@@ -502,15 +502,14 @@ def _fit_stdpnf(self):
502502
503503 labeled_data = self .structure_stdnpf .loc [
504504 self .structure_stdnpf ["label" ] != - 1
505- ]
505+ ]
506506 self .classifier_stdpnf .fit (
507507 labeled_data ["sample" ].tolist (), labeled_data ["label" ].tolist ()
508508 )
509509
510510 count += 1
511511
512- labeled_data = self .structure_stdnpf .loc [
513- self .structure_stdnpf ["label" ] != - 1 ]
512+ labeled_data = self .structure_stdnpf .loc [self .structure_stdnpf ["label" ] != - 1 ]
514513 self .classifier_stdpnf .fit (
515514 labeled_data ["sample" ].tolist (), labeled_data ["label" ].tolist ()
516515 )
@@ -533,8 +532,7 @@ def _results_to_structure(self, complete, result):
533532 if not is_in :
534533 results_to_unlabeled .append (r )
535534 for r in results_to_unlabeled :
536- self .structure_stdnpf .at [
537- np .array (self .structure_stdnpf ["sample" ], r )][
535+ self .structure_stdnpf .at [np .array (self .structure_stdnpf ["sample" ], r )][
538536 "label"
539537 ] = - 1
540538
0 commit comments