|
| 1 | +/******************************************************** |
| 2 | + PID Basic simulated heater Example |
| 3 | + Reading simulated analog input 0 to control analog PWM output 3 |
| 4 | + ********************************************************/ |
| 5 | +// This simulates a 20W heater block driven by the PID |
| 6 | +// Vary the setpoint with the Pot, and watch the heater drive the temperature up |
| 7 | +// |
| 8 | +// Simulation at https://wokwi.com/projects/359088752027305985 |
| 9 | +// |
| 10 | +// Based on |
| 11 | +// Wokwi https://wokwi.com/projects/357374218559137793 |
| 12 | +// Wokwi https://wokwi.com/projects/356437164264235009 |
| 13 | + |
| 14 | +#include "PID_v1.h" // https://github.com/br3ttb/Arduino-PID-Library |
| 15 | +// local copy of .h and .cpp are tweaked to expose the integral per |
| 16 | +// https://github.com/br3ttb/Arduino-PID-Library/pull/133 |
| 17 | +#define USE_HACK // access the PID.outputSum variable |
| 18 | + |
| 19 | +//Define Variables we'll be connecting to |
| 20 | +double Setpoint, Input, Output; |
| 21 | + |
| 22 | +//Specify the links and initial tuning parameters |
| 23 | +//double Kp = 20, Ki = .01, Kd = 10; // works reasonably with sim heater block fo 220deg |
| 24 | +double Kp = 25.5, Ki = 0.1, Kd = 0; // +/-10°proportional band |
| 25 | +//double Kp = 255, Ki = 0.05, Kd = 0; // works reasonably with sim heater block |
| 26 | +//double Kp = 255, Ki = .0, Kd = 0; // +/-1° proportional band works reasonably with sim heater block |
| 27 | +//double Kp = 10000, Ki = 0.0, Kd = 0.0; // bang-bang |
| 28 | +//double Kp = 2, Ki = 0.0, Kd = 0.0; // P-only |
| 29 | +//double Kp = 2, Ki = 5, Kd = 1; // commonly used defaults |
| 30 | + |
| 31 | +PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, P_ON_E, DIRECT); |
| 32 | + |
| 33 | +const int PWM_PIN = 3; // UNO PWM pin for Output |
| 34 | +const int INPUT_PIN = -1; // Analog pin for Input (set <0 for simulation) |
| 35 | +const int SETPOINT_PIN = A1; // Analog pin for Setpoint Potentiometer |
| 36 | +const int AUTOMATIC_PIN = 8; // Pin for controlling manual/auto mode, NO |
| 37 | +const int OVERRIDE_PIN = 12; // Pin for integral override, NO |
| 38 | +const int PLUS_PIN = 4; // Pin for integral override, NO |
| 39 | +const int MINUS_PIN = 7; // Pin for integral override, NO |
| 40 | +const int LCD_SDA_PIN = A4; // Used by LiquidCrystal_I2C |
| 41 | +const int LCD_SCL_PIN = A5; // Used by LiquidCrystal_I2C |
| 42 | + |
| 43 | +#include <LiquidCrystal_I2C.h> // https://github.com/johnrickman/LiquidCrystal_I2C |
| 44 | + |
| 45 | +#define I2C_ADDR 0x27 |
| 46 | +#define LCD_COLUMNS 20 |
| 47 | +#define LCD_LINES 4 |
| 48 | + |
| 49 | +LiquidCrystal_I2C lcd(I2C_ADDR, LCD_COLUMNS, LCD_LINES); // uses SDA=A4,SCL=A5 on Uno |
| 50 | + |
| 51 | +void setup() |
| 52 | +{ |
| 53 | + Serial.begin(115200); |
| 54 | + Serial.println(__FILE__); |
| 55 | + myPID.SetOutputLimits(0, 255); // -4 for |
| 56 | + pinMode(OVERRIDE_PIN, INPUT_PULLUP); |
| 57 | + pinMode(AUTOMATIC_PIN, INPUT_PULLUP); |
| 58 | + pinMode(MINUS_PIN, INPUT_PULLUP); |
| 59 | + pinMode(PLUS_PIN, INPUT_PULLUP); |
| 60 | + Setpoint = 0; |
| 61 | + //turn the PID on |
| 62 | + myPID.SetMode(AUTOMATIC); |
| 63 | + if(INPUT_PIN>0){ |
| 64 | + Input = analogRead(INPUT_PIN); |
| 65 | + }else{ |
| 66 | + Input = simPlant(0.0,1.0); // simulate heating |
| 67 | + } |
| 68 | + lcd.init(); |
| 69 | + lcd.backlight(); |
| 70 | + |
| 71 | + Serial.println("Setpoint Input Output Integral"); |
| 72 | +} |
| 73 | + |
| 74 | +void loop() |
| 75 | +{ |
| 76 | + // gather Input from INPUT_PIN or simulated block |
| 77 | + float heaterWatts = Output * 20.0 / 255; // 20W heater |
| 78 | + if (INPUT_PIN > 0 ) { |
| 79 | + Input = analogRead(INPUT_PIN); |
| 80 | + } else { |
| 81 | + float blockTemp = simPlant(heaterWatts,Output>0?1.0:1-Output); // simulate heating |
| 82 | + Input = blockTemp; // read input from simulated heater block |
| 83 | + } |
| 84 | + |
| 85 | + if (myPID.Compute()) |
| 86 | + { |
| 87 | + //Output = (int)Output; // Recognize that the output as used is integer |
| 88 | + analogWrite(PWM_PIN, Output); |
| 89 | + |
| 90 | + } |
| 91 | + |
| 92 | + Setpoint = analogRead(SETPOINT_PIN) / 4; // Read setpoint from potentiometer |
| 93 | + if(digitalRead(OVERRIDE_PIN)==LOW) mySetIntegral(&myPID,0); // integral override |
| 94 | + if(digitalRead(AUTOMATIC_PIN)==HIGH != myPID.GetMode()==AUTOMATIC){ |
| 95 | + myPID.SetMode(digitalRead(AUTOMATIC_PIN)==HIGH ? AUTOMATIC :MANUAL); |
| 96 | + } |
| 97 | + static uint32_t lastButton = 0; |
| 98 | + if(myPID.GetMode()==MANUAL && millis() - lastButton > 250){ |
| 99 | + if(digitalRead(PLUS_PIN)==LOW){ |
| 100 | + Output += 1; |
| 101 | + lastButton = millis(); |
| 102 | + } |
| 103 | + if(digitalRead(MINUS_PIN)==LOW){ |
| 104 | + Output -= 1; |
| 105 | + lastButton = millis(); |
| 106 | + } |
| 107 | + } |
| 108 | + |
| 109 | + report(); |
| 110 | + reportLCD(); |
| 111 | + |
| 112 | +} |
| 113 | + |
| 114 | +void report(void) |
| 115 | +{ |
| 116 | + static uint32_t last = 0; |
| 117 | + const int interval = 250; |
| 118 | + if (millis() - last > interval) { |
| 119 | + last += interval; |
| 120 | + // Serial.print(millis()/1000.0); |
| 121 | + Serial.print("SP:");Serial.print(Setpoint); |
| 122 | + Serial.print(" PV:"); |
| 123 | + Serial.print(Input); |
| 124 | + Serial.print(" CV:"); |
| 125 | + Serial.print(Output); |
| 126 | + Serial.print(" Int:"); |
| 127 | +#if defined(USE_HACK) |
| 128 | + Serial.print(myPID.outputSum); |
| 129 | +#endif |
| 130 | + Serial.print(' '); |
| 131 | + Serial.println(); |
| 132 | + } |
| 133 | +} |
| 134 | + |
| 135 | +void reportLCD(void) |
| 136 | +{ |
| 137 | + static uint32_t last = 0; |
| 138 | + const int interval = 250; |
| 139 | + if (millis() - last > interval) { |
| 140 | + last += interval; |
| 141 | + // Serial.print(millis()/1000.0); |
| 142 | + // lcd.clear(); |
| 143 | + lcd.setCursor(0,0); |
| 144 | + lcd.print("PV:"); |
| 145 | + lcd.print(Input,3); |
| 146 | + lcd.print(" CV:"); |
| 147 | + lcd.print(Output,3); |
| 148 | + lcd.print(" "); |
| 149 | + lcd.setCursor(0,1); |
| 150 | + lcd.print("SP:"); |
| 151 | + lcd.print(Setpoint,3); |
| 152 | + lcd.print(myPID.GetMode()==AUTOMATIC? " Automatic ":" Manual "); |
| 153 | + lcd.print(" "); |
| 154 | + lcd.setCursor(0,3); |
| 155 | + lcd.print("Int:"); |
| 156 | +#if defined(USE_HACK) |
| 157 | + lcd.print(myPID.outputSum,4); |
| 158 | +#endif |
| 159 | + lcd.print(' '); |
| 160 | + lcd.println(); |
| 161 | + } |
| 162 | +} |
| 163 | + |
| 164 | +float simPlant(float Q,float hfactor) { // heat input in W (or J/s) |
| 165 | + // simulate a 1x1x2cm aluminum block with a heater and passive ambient cooling |
| 166 | + // float C = 237; // W/mK thermal conduction coefficient for Al |
| 167 | + float h = 5 *hfactor ; // W/m2K thermal convection coefficient for Al passive |
| 168 | + float Cps = 0.89; // J/g°C |
| 169 | + float area = 1e-4; // m2 area for convection |
| 170 | + float mass = 10 ; // g |
| 171 | + float Tamb = 25; // °C |
| 172 | + static float T = Tamb; // °C |
| 173 | + static uint32_t last = 0; |
| 174 | + uint32_t interval = 100; // ms |
| 175 | + |
| 176 | + if (millis() - last >= interval) { |
| 177 | + last += interval; |
| 178 | + // 0-dimensional heat transfer |
| 179 | + T = T + Q * interval / 1000 / mass / Cps - (T - Tamb) * area * h; |
| 180 | + } |
| 181 | + return T; |
| 182 | +} |
| 183 | + |
| 184 | +void mySetIntegral(PID * ptrPID,double value ){ |
| 185 | + ptrPID->SetMode(MANUAL); |
| 186 | + Output = value; |
| 187 | + ptrPID->SetMode(AUTOMATIC); |
| 188 | +} |
| 189 | + |
| 190 | + |
0 commit comments