Skip to content

Commit e89581a

Browse files
committed
an idea for handling large code bases.
1 parent 0ba9e17 commit e89581a

File tree

1 file changed

+243
-0
lines changed

1 file changed

+243
-0
lines changed

docs/LargeCodeBase_Plan.md

Lines changed: 243 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,243 @@
1+
# Handling Large Codebases in MyCoder: Research and Recommendations
2+
3+
## Executive Summary
4+
5+
This document presents research findings on how leading AI coding tools handle large codebases and provides strategic recommendations for enhancing MyCoder's performance with large projects. The focus is on understanding indexing and context management approaches used by Claude Code and Aider, and applying these insights to improve MyCoder's architecture.
6+
7+
## Research Findings
8+
9+
### Claude Code (Anthropic)
10+
11+
While detailed technical documentation on Claude Code's internal architecture is limited in public sources, we can infer several approaches from Anthropic's general AI architecture and Claude Code's capabilities:
12+
13+
1. **Chunking and Retrieval Augmentation**:
14+
- Claude Code likely employs retrieval-augmented generation (RAG) to handle large codebases
15+
- Files are likely chunked into manageable segments with semantic understanding
16+
- Relevant code chunks are retrieved based on query relevance
17+
18+
2. **Hierarchical Code Understanding**:
19+
- Builds a hierarchical representation of code (project → modules → files → functions)
20+
- Maintains a graph of relationships between code components
21+
- Prioritizes context based on relevance to the current task
22+
23+
3. **Incremental Context Management**:
24+
- Dynamically adjusts the context window to include only relevant code
25+
- Maintains a "working memory" of recently accessed or modified files
26+
- Uses sliding context windows to process large files sequentially
27+
28+
4. **Intelligent Caching**:
29+
- Caches parsed code structures and embeddings to avoid repeated processing
30+
- Prioritizes frequently accessed or modified files in the cache
31+
- Implements a cache eviction strategy based on recency and relevance
32+
33+
### Aider
34+
35+
Aider's approach to handling large codebases can be inferred from its open-source codebase and documentation:
36+
37+
1. **Git Integration**:
38+
- Leverages Git to track file changes and understand repository structure
39+
- Uses Git history to prioritize recently modified files
40+
- Employs Git's diff capabilities to minimize context needed for changes
41+
42+
2. **Selective File Context**:
43+
- Only includes relevant files in the context rather than the entire codebase
44+
- Uses heuristics to identify related files based on imports, references, and naming patterns
45+
- Implements a "map-reduce" approach where it first analyzes the codebase structure, then selectively processes relevant files
46+
47+
3. **Prompt Engineering and Chunking**:
48+
- Designs prompts that can work with limited context by focusing on specific tasks
49+
- Chunks large files and processes them incrementally
50+
- Uses summarization to compress information about non-focal code parts
51+
52+
4. **Caching Mechanisms**:
53+
- Implements token usage optimization through caching
54+
- Avoids redundant LLM calls for unchanged content
55+
- Maintains a local database of file content and embeddings
56+
57+
## Recommendations for MyCoder
58+
59+
Based on the research findings, we recommend the following enhancements to MyCoder for better handling of large codebases:
60+
61+
### 1. Implement a Multi-Level Indexing System
62+
63+
```
64+
┌───────────────────┐
65+
│ Project Metadata │
66+
├───────────────────┤
67+
│ - Structure │
68+
│ - Dependencies │
69+
│ - Config Files │
70+
└───────┬───────────┘
71+
72+
73+
┌───────────────────┐ ┌───────────────────┐
74+
│ File Index │ │ Symbol Database │
75+
├───────────────────┤ ├───────────────────┤
76+
│ - Path │◄────────┤ - Functions │
77+
│ - Language │ │ - Classes │
78+
│ - Modified Date │ │ - Variables │
79+
│ - Size │ │ - Imports/Exports │
80+
└───────┬───────────┘ └───────────────────┘
81+
82+
83+
┌───────────────────┐
84+
│ Semantic Index │
85+
├───────────────────┤
86+
│ - Code Embeddings │
87+
│ - Doc Embeddings │
88+
│ - Relationships │
89+
└───────────────────┘
90+
```
91+
92+
**Implementation Details:**
93+
- Create a lightweight indexer that runs during project initialization
94+
- Generate embeddings for code files, focusing on API definitions, function signatures, and documentation
95+
- Build a graph of relationships between files based on imports/exports and references
96+
- Store indexes in a persistent local database for quick loading in future sessions
97+
98+
### 2. Develop a Smart Context Management System
99+
100+
```
101+
┌─────────────────────────┐
102+
│ Context Manager │
103+
├─────────────────────────┤
104+
│ ┌─────────────────────┐ │
105+
│ │ Working Set │ │
106+
│ │ (Currently relevant │ │
107+
│ │ files and symbols) │ │
108+
│ └─────────────────────┘ │
109+
│ │
110+
│ ┌─────────────────────┐ │
111+
│ │ Relevance Scoring │ │
112+
│ │ Algorithm │ │
113+
│ └─────────────────────┘ │
114+
│ │
115+
│ ┌─────────────────────┐ │
116+
│ │ Context Window │ │
117+
│ │ Optimization │ │
118+
│ └─────────────────────┘ │
119+
└─────────────────────────┘
120+
```
121+
122+
**Implementation Details:**
123+
- Develop a working set manager that tracks currently relevant files
124+
- Implement a relevance scoring algorithm that considers:
125+
- Semantic similarity to the current task
126+
- Recency of access or modification
127+
- Dependency relationships
128+
- User attention (files explicitly mentioned)
129+
- Optimize context window usage by:
130+
- Including full content for directly relevant files
131+
- Including only signatures and documentation for related files
132+
- Summarizing distant but potentially relevant code
133+
- Dynamically adjusting the detail level based on available context space
134+
135+
### 3. Implement Chunking and Progressive Loading
136+
137+
```
138+
┌─────────────────────────┐
139+
│ Chunking Strategy │
140+
├─────────────────────────┤
141+
│ 1. Semantic Boundaries │
142+
│ (Classes/Functions) │
143+
│ 2. Size-based Chunks │
144+
│ with Overlap │
145+
│ 3. Progressive Detail │
146+
│ Loading │
147+
└─────────────────────────┘
148+
```
149+
150+
**Implementation Details:**
151+
- Chunk files at meaningful boundaries (functions, classes, modules)
152+
- Implement overlapping chunks to maintain context across boundaries
153+
- Develop a progressive loading strategy:
154+
- Start with high-level project structure and relevant file summaries
155+
- Load detailed chunks as needed based on the task
156+
- Implement a sliding context window for processing large files
157+
158+
### 4. Create an Intelligent Caching System
159+
160+
```
161+
┌─────────────────────────┐
162+
│ Caching System │
163+
├─────────────────────────┤
164+
│ ┌─────────────────────┐ │
165+
│ │ Token Cache │ │
166+
│ │ (Avoid repeated │ │
167+
│ │ tokenization) │ │
168+
│ └─────────────────────┘ │
169+
│ │
170+
│ ┌─────────────────────┐ │
171+
│ │ Embedding Cache │ │
172+
│ │ (Store vector │ │
173+
│ │ representations) │ │
174+
│ └─────────────────────┘ │
175+
│ │
176+
│ ┌─────────────────────┐ │
177+
│ │ Prompt Template │ │
178+
│ │ Cache │ │
179+
│ └─────────────────────┘ │
180+
└─────────────────────────┘
181+
```
182+
183+
**Implementation Details:**
184+
- Implement a multi-level caching system:
185+
- Token cache: Store tokenized representations of files to avoid re-tokenization
186+
- Embedding cache: Store vector embeddings for semantic search
187+
- Prompt template cache: Cache commonly used prompt templates
188+
- Develop an efficient cache invalidation strategy based on file modifications
189+
- Use persistent storage for caches to maintain performance across sessions
190+
191+
### 5. Enhance Sub-Agent Coordination for Parallel Processing
192+
193+
```
194+
┌─────────────────────────┐
195+
│ Sub-Agent Coordinator │
196+
├─────────────────────────┤
197+
│ ┌─────────────────────┐ │
198+
│ │ Task Decomposition │ │
199+
│ └─────────────────────┘ │
200+
│ │
201+
│ ┌─────────────────────┐ │
202+
│ │ Context Distribution│ │
203+
│ └─────────────────────┘ │
204+
│ │
205+
│ ┌─────────────────────┐ │
206+
│ │ Result Integration │ │
207+
│ └─────────────────────┘ │
208+
└─────────────────────────┘
209+
```
210+
211+
**Implementation Details:**
212+
- Improve task decomposition to identify parallelizable sub-tasks
213+
- Implement smart context distribution to sub-agents:
214+
- Provide each sub-agent with only the context it needs
215+
- Share common context like project structure across all sub-agents
216+
- Use a shared index to avoid duplicating large context elements
217+
- Develop better coordination mechanisms for sub-agents:
218+
- Implement a message-passing system for inter-agent communication
219+
- Create a shared memory space for efficient information exchange
220+
- Design a result integration system to combine outputs from multiple sub-agents
221+
222+
## Implementation Roadmap
223+
224+
### Phase 1: Foundation (1-2 months)
225+
- Develop the basic indexing system for project structure and file metadata
226+
- Implement a simple relevance-based context selection mechanism
227+
- Create a basic chunking strategy for large files
228+
229+
### Phase 2: Advanced Features (2-3 months)
230+
- Implement the semantic indexing system with code embeddings
231+
- Develop the full context management system with working sets
232+
- Create the multi-level caching system
233+
234+
### Phase 3: Optimization and Integration (1-2 months)
235+
- Enhance sub-agent coordination for parallel processing
236+
- Optimize performance with better caching and context management
237+
- Integrate all components into a cohesive system
238+
239+
## Conclusion
240+
241+
By implementing these recommendations, MyCoder can significantly improve its performance with large codebases. The multi-level indexing system will provide a comprehensive understanding of the codebase structure, while the smart context management system will ensure that the most relevant code is included in the context window. The chunking and progressive loading strategy will enable handling of files that exceed the context window size, and the intelligent caching system will optimize token usage and improve response times. Finally, enhanced sub-agent coordination will enable efficient parallel processing of large codebases.
242+
243+
These enhancements will position MyCoder as a leading tool for AI-assisted coding, capable of handling projects of any size with intelligent context management and efficient resource utilization.

0 commit comments

Comments
 (0)