|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +import argparse |
| 4 | +import csv |
| 5 | +import logging |
| 6 | +import os |
| 7 | +import sys |
| 8 | +from typing import List, Optional, Set, Tuple |
| 9 | + |
| 10 | +import networkx as nx |
| 11 | + |
| 12 | +from cut_header import compute_added_sizes |
| 13 | +from include_analysis import IncludeAnalysisOutput, ParseError, load_include_analysis |
| 14 | +from utils import create_graph_from_include_analysis |
| 15 | + |
| 16 | + |
| 17 | +def create_include_graph( |
| 18 | + include_analysis: IncludeAnalysisOutput, |
| 19 | + skips: Optional[Tuple[Tuple[str, str]]], |
| 20 | +) -> nx.DiGraph: |
| 21 | + DG: nx.DiGraph = create_graph_from_include_analysis(include_analysis) |
| 22 | + files = include_analysis["files"] |
| 23 | + |
| 24 | + if skips: |
| 25 | + for includer, included in skips: |
| 26 | + if includer in files and included in files: |
| 27 | + includer_idx = files.index(includer) |
| 28 | + included_idx = files.index(included) |
| 29 | + |
| 30 | + if DG.has_edge(includer_idx, included_idx): |
| 31 | + DG.remove_edge(includer_idx, included_idx) |
| 32 | + else: |
| 33 | + logging.warning(f"Skip edge {includer} -> {included} not found in include graph") |
| 34 | + else: |
| 35 | + logging.warning(f"Skip edge {includer} -> {included} not found in include analysis") |
| 36 | + |
| 37 | + return DG |
| 38 | + |
| 39 | + |
| 40 | +def find_entry_points( |
| 41 | + include_analysis: IncludeAnalysisOutput, |
| 42 | + DG: nx.DiGraph, |
| 43 | + subset: Set[str], |
| 44 | +) -> List[str]: |
| 45 | + """Find entry points into a subset of nodes. |
| 46 | +
|
| 47 | + An entry point is a node in the subset that is still reachable from |
| 48 | + at least one root after all edges *between* nodes in the subset have |
| 49 | + been removed. This identifies which subset nodes are the first to |
| 50 | + appear on paths from roots into the subset cluster. |
| 51 | + """ |
| 52 | + files = include_analysis["files"] |
| 53 | + file_idx_lookup = {filename: idx for idx, filename in enumerate(files)} |
| 54 | + subset_indices = {file_idx_lookup[f] for f in subset if f in file_idx_lookup} |
| 55 | + |
| 56 | + DG2 = DG.copy() |
| 57 | + |
| 58 | + # Remove all edges between nodes in the subset |
| 59 | + edges_to_remove = [] |
| 60 | + for u in subset_indices: |
| 61 | + for _, v in DG2.out_edges(u): |
| 62 | + if v in subset_indices: |
| 63 | + edges_to_remove.append((u, v)) |
| 64 | + for v, _ in DG2.in_edges(u): |
| 65 | + if v in subset_indices: |
| 66 | + edges_to_remove.append((v, u)) |
| 67 | + |
| 68 | + DG2.remove_edges_from(edges_to_remove) |
| 69 | + |
| 70 | + # For each root, find which subset nodes are still reachable |
| 71 | + entry_points = set() |
| 72 | + |
| 73 | + root_indices = set() |
| 74 | + for root in include_analysis["roots"]: |
| 75 | + if root in file_idx_lookup: |
| 76 | + root_indices.add(file_idx_lookup[root]) |
| 77 | + |
| 78 | + for root_idx in root_indices: |
| 79 | + reachable = nx.descendants(DG2, root_idx) |
| 80 | + reachable_subset = reachable & subset_indices |
| 81 | + entry_points.update(reachable_subset) |
| 82 | + |
| 83 | + return sorted(files[idx] for idx in entry_points) |
| 84 | + |
| 85 | + |
| 86 | +def find_top_edges( |
| 87 | + include_analysis: IncludeAnalysisOutput, |
| 88 | + subset: Set[str], |
| 89 | + top_n: int = 10, |
| 90 | + ignores: Optional[Set[Tuple[str, str]]] = None, |
| 91 | +) -> List[Tuple[str, str, float]]: |
| 92 | + """Find the top N edges between nodes inside the subset, ranked by prevalence. |
| 93 | +
|
| 94 | + Returns a list of (includer, included, prevalence) tuples sorted by |
| 95 | + prevalence descending. |
| 96 | + """ |
| 97 | + root_count = len(include_analysis["roots"]) |
| 98 | + edges = [] |
| 99 | + |
| 100 | + for included in subset: |
| 101 | + for includer in include_analysis["included_by"].get(included, []): |
| 102 | + if includer not in subset: |
| 103 | + continue |
| 104 | + if ignores and (includer, included) in ignores: |
| 105 | + continue |
| 106 | + prevalence = (100.0 * include_analysis["prevalence"][includer]) / root_count |
| 107 | + edges.append((includer, included, prevalence)) |
| 108 | + |
| 109 | + # Sort by prevalence descending, take top N |
| 110 | + edges.sort(key=lambda x: x[2], reverse=True) |
| 111 | + return edges[:top_n] |
| 112 | + |
| 113 | + |
| 114 | +def find_top_edges_by_dominators( |
| 115 | + include_analysis: IncludeAnalysisOutput, |
| 116 | + subset: Set[str], |
| 117 | + dominators: dict, |
| 118 | + top_n: int = 10, |
| 119 | + ignores: Optional[Set[Tuple[str, str]]] = None, |
| 120 | +) -> List[Tuple[str, str, float, int]]: |
| 121 | + """Find the top N edges between nodes inside the subset, ranked by dominator count. |
| 122 | +
|
| 123 | + Returns a list of (includer, included, prevalence, dominator_count) tuples |
| 124 | + sorted by dominator count descending. |
| 125 | + """ |
| 126 | + root_count = len(include_analysis["roots"]) |
| 127 | + edges = [] |
| 128 | + |
| 129 | + for included in subset: |
| 130 | + for includer in include_analysis["included_by"].get(included, []): |
| 131 | + if includer not in subset: |
| 132 | + continue |
| 133 | + if ignores and (includer, included) in ignores: |
| 134 | + continue |
| 135 | + prevalence = (100.0 * include_analysis["prevalence"][includer]) / root_count |
| 136 | + dom_count = dominators.get((includer, included), 0) |
| 137 | + edges.append((includer, included, prevalence, dom_count)) |
| 138 | + |
| 139 | + # Sort by dominator count descending, take top N |
| 140 | + edges.sort(key=lambda x: x[3], reverse=True) |
| 141 | + return edges[:top_n] |
| 142 | + |
| 143 | + |
| 144 | +# Adapted from analyze_includes.py in Chromium |
| 145 | +def compute_doms(DG: nx.DiGraph, roots): |
| 146 | + # Give each node a size of 1 to represent one file |
| 147 | + sizes = {data["filename"]: 1 for _, data in DG.nodes(data=True) if "filename" in data} |
| 148 | + |
| 149 | + # Split each src -> dst edge in includes into src -> (src,dst) -> dst, so that |
| 150 | + # we can compute how much each include graph edge adds to the size by doing |
| 151 | + # dominance analysis on the (src,dst) nodes. |
| 152 | + augmented_includes = {} |
| 153 | + for src_node_id, src_data in DG.nodes(data=True): |
| 154 | + if "filename" not in src_data: |
| 155 | + continue |
| 156 | + |
| 157 | + src = src_data["filename"] |
| 158 | + if src not in augmented_includes: |
| 159 | + augmented_includes[src] = set() |
| 160 | + |
| 161 | + for dst_node_id in DG.successors(src_node_id): |
| 162 | + dst = DG.nodes(data=True)[dst_node_id]["filename"] |
| 163 | + augmented_includes[src].add((src, dst)) |
| 164 | + augmented_includes[(src, dst)] = {dst} |
| 165 | + |
| 166 | + return compute_added_sizes((roots, augmented_includes, sizes)) |
| 167 | + |
| 168 | + |
| 169 | +def main(): |
| 170 | + parser = argparse.ArgumentParser( |
| 171 | + description="Find entry points and top edges for high-prevalence headers in the include graph." |
| 172 | + ) |
| 173 | + parser.add_argument( |
| 174 | + "include_analysis_output", |
| 175 | + type=str, |
| 176 | + nargs="?", |
| 177 | + help="The include analysis output to use (can be a file path or URL). If not specified, pulls the latest.", |
| 178 | + ) |
| 179 | + parser.add_argument("--skips", action="append", default=[], help="CSV files of edges to skip (remove from graph).") |
| 180 | + parser.add_argument("--ignores", action="append", default=[], help="CSV files of edges to ignore.") |
| 181 | + parser.add_argument( |
| 182 | + "--min-prevalence", |
| 183 | + type=float, |
| 184 | + required=True, |
| 185 | + help="Minimum prevalence percentage for a node to be in the subset.", |
| 186 | + ) |
| 187 | + parser.add_argument( |
| 188 | + "--top", type=int, default=10, help="Number of top edges to output by prevalence (default: 10)." |
| 189 | + ) |
| 190 | + parser.add_argument("--verbose", action="store_true", default=False, help="Enable verbose logging.") |
| 191 | + args = parser.parse_args() |
| 192 | + |
| 193 | + logging.basicConfig( |
| 194 | + format="%(asctime)s - %(levelname)s - %(message)s", |
| 195 | + level=logging.DEBUG if args.verbose else logging.WARNING, |
| 196 | + ) |
| 197 | + |
| 198 | + try: |
| 199 | + include_analysis = load_include_analysis(args.include_analysis_output) |
| 200 | + except ParseError as e: |
| 201 | + message = str(e) |
| 202 | + print("error: Could not parse include analysis output file") |
| 203 | + if message: |
| 204 | + print(message) |
| 205 | + return 2 |
| 206 | + |
| 207 | + root_count = len(include_analysis["roots"]) |
| 208 | + |
| 209 | + # Load skips and ignores from CSV files |
| 210 | + skips: Set[Tuple[str, str]] = set() |
| 211 | + ignores: Set[Tuple[str, str]] = set() |
| 212 | + |
| 213 | + for skips_file in args.skips: |
| 214 | + with open(skips_file, "r", newline="") as f: |
| 215 | + skips.update( |
| 216 | + [tuple(row) for row in csv.reader(f) if row and row[0].strip() and not row[0].startswith("#")] |
| 217 | + ) |
| 218 | + |
| 219 | + for ignores_file in args.ignores: |
| 220 | + with open(ignores_file, "r", newline="") as f: |
| 221 | + ignores.update([tuple(row) for row in csv.reader(f) if row]) |
| 222 | + |
| 223 | + # Build the subset: filter out generated/system/third-party headers and keep those meeting minimum prevalence |
| 224 | + EXCLUDED_PREFIXES = ("out/", "buildtools/", "build/", "third_party/", "v8/") |
| 225 | + EXCLUDED_EXCEPTIONS = ("third_party/blink/",) |
| 226 | + subset: Set[str] = set() |
| 227 | + |
| 228 | + for filename in include_analysis["files"]: |
| 229 | + if filename.startswith(EXCLUDED_PREFIXES) and not filename.startswith(EXCLUDED_EXCEPTIONS): |
| 230 | + continue |
| 231 | + |
| 232 | + prevalence = (100.0 * include_analysis["prevalence"].get(filename, 0)) / root_count |
| 233 | + |
| 234 | + if prevalence >= args.min_prevalence: |
| 235 | + subset.add(filename) |
| 236 | + |
| 237 | + logging.info(f"Subset size: {len(subset)} nodes with >= {args.min_prevalence:.2f}% prevalence") |
| 238 | + |
| 239 | + if not subset: |
| 240 | + print(f"No nodes meet the minimum prevalence of {args.min_prevalence:.2f}%", file=sys.stderr) |
| 241 | + return 0 |
| 242 | + |
| 243 | + DG: nx.DiGraph = create_include_graph(include_analysis, skips) |
| 244 | + |
| 245 | + entry_points = find_entry_points(include_analysis, DG, subset) |
| 246 | + dominators = compute_doms( |
| 247 | + DG.subgraph([include_analysis["files"].index(node) for node in subset]).copy(), entry_points |
| 248 | + ) |
| 249 | + |
| 250 | + # Find and output top N edges by prevalence |
| 251 | + top_edges = find_top_edges(include_analysis, subset, top_n=args.top, ignores=ignores) |
| 252 | + |
| 253 | + # Find top N edges by dominator count |
| 254 | + top_edges_by_doms = find_top_edges_by_dominators( |
| 255 | + include_analysis, subset, dominators, top_n=args.top, ignores=ignores |
| 256 | + ) |
| 257 | + |
| 258 | + print(f"Top {args.top} edges by prevalence:", file=sys.stderr) |
| 259 | + |
| 260 | + try: |
| 261 | + csv_writer = csv.writer(sys.stdout) |
| 262 | + for includer, included, prevalence in top_edges: |
| 263 | + csv_writer.writerow([includer, included, f"{prevalence:.2f}", dominators.get((includer, included), 0)]) |
| 264 | + |
| 265 | + print(f"\nTop {args.top} edges by dominator count:", file=sys.stderr) |
| 266 | + |
| 267 | + for includer, included, prevalence, dom_count in top_edges_by_doms: |
| 268 | + csv_writer.writerow([includer, included, f"{prevalence:.2f}", dom_count]) |
| 269 | + |
| 270 | + sys.stdout.flush() |
| 271 | + except BrokenPipeError: |
| 272 | + devnull = os.open(os.devnull, os.O_WRONLY) |
| 273 | + os.dup2(devnull, sys.stdout.fileno()) |
| 274 | + sys.exit(1) |
| 275 | + |
| 276 | + return 0 |
| 277 | + |
| 278 | + |
| 279 | +if __name__ == "__main__": |
| 280 | + try: |
| 281 | + sys.exit(main()) |
| 282 | + except KeyboardInterrupt: |
| 283 | + pass # Don't show the user anything |
0 commit comments