Skip to content

Commit 03e705f

Browse files
committed
2 parents 9037721 + 235cab6 commit 03e705f

File tree

1 file changed

+4
-6
lines changed

1 file changed

+4
-6
lines changed

README.rst

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -28,32 +28,30 @@ reconstruction problems.
2828

2929
Take representative examples of the types of data to be reconstructed (in this case polynomials)
3030

31-
..code-block:: python
31+
.. code-block:: python
3232
3333
x = numpy.linspace(0, 1, 1001)
3434
data = numpy.vander(x, 11).T # Select
3535
3636
and feed them into a `SensorSelector`
3737

38-
..code-block:: python
38+
.. code-block:: python
3939
4040
model = pysensors.Sensorselector(n_sensors=10)
4141
model.fit(x)
4242
4343
Use the `predict` method to reconstruct a new function sampled at the chosen sensor locations:
4444

45-
..code-block:: python
45+
.. code-block:: python
4646
4747
f = numpy.abs(x[method.selected_sensors]**2 - 0.5)
4848
f_pred = model.predict(f)
4949
50-
.. figure:: ../docs/figures/vandermonde.png
50+
.. figure:: docs/figures/vandermonde.png
5151
:align: center
5252
:alt: A plot showing the function to be reconstructed, the learned sensor locations, and the reconstruction.
5353
:figclass: align-center
5454

55-
A plot showing the function to be reconstructed (black, dashed), the learned sensor locations (blue, circles), and the reconstruction (blue, solid).
56-
5755
Classification
5856
^^^^^^^^^^^^^^
5957
Classification is the problem of predicting which category an example belongs to, given a set of training data (e.g. determining whether digital photos are of dogs or cats).

0 commit comments

Comments
 (0)