Skip to content

Commit 31c9e23

Browse files
committed
DOC: Add new example notebooks for TPGR optimizers, update existing notebooks
1 parent 43a3a32 commit 31c9e23

File tree

8 files changed

+952
-124
lines changed

8 files changed

+952
-124
lines changed

examples/cost_constrained_qr.ipynb

Lines changed: 9 additions & 9 deletions
Large diffs are not rendered by default.

examples/cross_validation.ipynb

Lines changed: 16 additions & 38 deletions
Large diffs are not rendered by default.

examples/pysensors_overview.ipynb

Lines changed: 27 additions & 33 deletions
Large diffs are not rendered by default.

examples/reconstruction_comparison.ipynb

Lines changed: 446 additions & 0 deletions
Large diffs are not rendered by default.

examples/spatially_constrained_qr.ipynb

Lines changed: 37 additions & 38 deletions
Large diffs are not rendered by default.

examples/two_point_greedy.ipynb

Lines changed: 405 additions & 0 deletions
Large diffs are not rendered by default.

examples/vandermonde.ipynb

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -124,7 +124,7 @@
124124
"outputs": [],
125125
"source": [
126126
"# Interpolation using the points selected by the SSPOR\n",
127-
"pysense_interp = model.predict(f[sensors])"
127+
"pysense_interp = model.predict(f[sensors], method='unregularized')"
128128
]
129129
},
130130
{
@@ -210,7 +210,7 @@
210210
"model.set_number_of_sensors(5)\n",
211211
"sensors = model.get_selected_sensors()\n",
212212
"\n",
213-
"pysense_interp = model.predict(f[sensors])\n",
213+
"pysense_interp = model.predict(f[sensors], method='unregularized')\n",
214214
"\n",
215215
"fig, ax = plt.subplots(1, 1, figsize=(10, 4))\n",
216216
"ax.plot(x[sensors], f[sensors], 'bo')\n",
@@ -278,7 +278,7 @@
278278
"name": "python",
279279
"nbconvert_exporter": "python",
280280
"pygments_lexer": "ipython3",
281-
"version": "3.10.11"
281+
"version": "3.10.16"
282282
},
283283
"toc": {
284284
"base_numbering": 1,

pysensors/reconstruction/_sspor.py

Lines changed: 9 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ class SSPOR(BaseEstimator):
7979
>>> print(x[model.selected_sensors])
8080
[1. 0.754 0. 0.92 0.37 0.572 0.134]
8181
>>> f = np.sin(3*x)
82-
>>> f_pred = model.predict(f[model.selected_sensors])
82+
>>> f_pred = model.predict(f[model.selected_sensors], method='unregularized')
8383
>>> print(np.linalg.norm(f - f_pred))
8484
0.022405698005838044
8585
"""
@@ -493,12 +493,18 @@ def score(self, x, y=None, score_function=None, score_kws={}, solve_kws={}):
493493
sensors = self.get_selected_sensors()
494494
if score_function is None:
495495
return -np.sqrt(
496-
np.mean((self.predict(x[:, sensors], **solve_kws) - x) ** 2)
496+
np.mean(
497+
(
498+
self.predict(x[:, sensors], method="unregularized", **solve_kws)
499+
- x
500+
)
501+
** 2
502+
)
497503
)
498504
else:
499505
return score_function(
500506
x,
501-
self.predict(x[:, sensors], **solve_kws),
507+
self.predict(x[:, sensors], method="unregularized", **solve_kws),
502508
**score_kws,
503509
)
504510

0 commit comments

Comments
 (0)