You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: book/itslive/itslive_intro.md
+7-7Lines changed: 7 additions & 7 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -2,7 +2,7 @@
2
2
3
3
::::{tab-set}
4
4
:::{tab-item} Overview
5
-
This tutorial contains jupyter notebooks demonstrating various steps of a typical scientific workflow including accessing, processing and visualizing remote sensing data. The structure is as follows:
5
+
This tutorial contains jupyter notebooks demonstrating various steps of a typical scientific workflow, including accessing, processing, and visualizing remote sensing data. The structure is as follows:
6
6
7
7
**[1) Data access](nbs/1_accessing_itslive_s3_data.ipynb)**
8
8
- Access ITS_LIVE data stored as Zarr data cubes in an AWS S3 bucket.
@@ -12,23 +12,23 @@ This tutorial contains jupyter notebooks demonstrating various steps of a typica
12
12
13
13
**[3) Working with raster and vector data](nbs/3_combining_raster_vector_data.ipynb)**
14
14
- Parse geographic metadata with [cf_xarray](https://cf-xarray.readthedocs.io/en/latest/).
15
-
- Handle projections and coordinate reference system information with [GeoPandas](https://geopandas.org/en/stable/), [Rioxarray](https://corteva.github.io/rioxarray/stable/index.html) and [PyProj](https://pyproj4.github.io/pyproj/stable/).
15
+
- Handle projections and coordinate reference system information with [GeoPandas](https://geopandas.org/en/stable/), [Rioxarray](https://corteva.github.io/rioxarray/stable/index.html), and [PyProj](https://pyproj4.github.io/pyproj/stable/).
16
16
- Spatial subset of vector data with [GeoPandas](https://geopandas.org/en/stable/).
17
17
- Spatial subset of raster data using vector data with [Rioxarray](https://corteva.github.io/rioxarray/stable/index.html).
18
18
19
19
**[4) Initial inspection and analysis of velocity data for a single glacier](nbs/4_exploratory_data_analysis_single.ipynb)**
20
-
- Handle projections and coordinate reference system information with [GeoPandas](https://geopandas.org/en/stable/), [Rioxarray](https://corteva.github.io/rioxarray/stable/index.html) and [PyProj](https://pyproj4.github.io/pyproj/stable/).
20
+
- Handle projections and coordinate reference system information with [GeoPandas](https://geopandas.org/en/stable/), [Rioxarray](https://corteva.github.io/rioxarray/stable/index.html), and [PyProj](https://pyproj4.github.io/pyproj/stable/).
21
21
- Visualize raster and vector with background maps data using [Xarray](https://docs.xarray.dev/en/stable/), [GeoPandas](https://geopandas.org/en/stable/), and [Contextily](https://contextily.readthedocs.io/en/latest/).
22
22
- Calculate and examine data coverage along a given dimension using Xarray label-based indexing and selection.
23
-
- Use available metadata to interpret and organize dataset,
24
-
- Use [`xr.DataTree`](https://xarray-datatree.readthedocs.io/en/latest/data-structures.html) or [`groupby()`](https://docs.xarray.dev/en/stable/user-guide/groupby.html) to separate dataset using metadata,
23
+
- Use available metadata to interpret and organize datasets,
24
+
- Use [`xr.DataTree`](https://xarray-datatree.readthedocs.io/en/latest/data-structures.html) or [`groupby()`](https://docs.xarray.dev/en/stable/user-guide/groupby.html) to separate datasets using metadata,
25
25
- Use Xarray and [`scipy.stats`](https://docs.scipy.org/doc/scipy/reference/stats.html) to calculate and visualize summary statistics along a given dimension.
26
-
- Perform dimensional computations, reductions and visualizations using Xarray [`resample()`](https://docs.xarray.dev/en/stable/generated/xarray.Dataset.resample.html), [`groupby()`](https://docs.xarray.dev/en/stable/user-guide/groupby.html) and [`FacetGrid`](https://docs.xarray.dev/en/latest/generated/xarray.plot.FacetGrid.html).
26
+
- Perform dimensional computations, reductions and visualizations using Xarray [`resample()`](https://docs.xarray.dev/en/stable/generated/xarray.Dataset.resample.html), [`groupby()`](https://docs.xarray.dev/en/stable/user-guide/groupby.html), and [`FacetGrid`](https://docs.xarray.dev/en/latest/generated/xarray.plot.FacetGrid.html).
27
27
28
28
**[5) Exploratory analysis and visualization of multiple glaciers](nbs/5_exploratory_data_analysis_group.ipynb)**
29
29
- Combine raster and vector data into a multi-dimensional vector data cube using [Xvec](https://xvec.readthedocs.io/).
30
30
- Read and write vector data cubes to disk using Xvec methods that rely on [cf_xarray](https://cf-xarray.readthedocs.io/en/latest/) to encode and decode metadata.
31
-
- Interactive visualization of vector data cube using Xvec and GeoPandas.
31
+
- Interactive visualization of vector data cube using Xvec and GeoPandas.
32
32
- Use Xarray plotting tools to visualize data from a vector data cube.
0 commit comments