Skip to content

Commit 6388cf0

Browse files
authored
Fix header (#78)
* fix typos * fix typo
1 parent bec37f4 commit 6388cf0

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

book/itslive/itslive_intro.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
::::{tab-set}
44
:::{tab-item} Overview
5-
This tutorial contains jupyter notebooks demonstrating various steps of a typical scientific workflow including accessing, processing and visualizing remote sensing data. The structure is as follows:
5+
This tutorial contains jupyter notebooks demonstrating various steps of a typical scientific workflow, including accessing, processing, and visualizing remote sensing data. The structure is as follows:
66

77
**[1) Data access](nbs/1_accessing_itslive_s3_data.ipynb)**
88
- Access ITS_LIVE data stored as Zarr data cubes in an AWS S3 bucket.
@@ -12,23 +12,23 @@ This tutorial contains jupyter notebooks demonstrating various steps of a typica
1212

1313
**[3) Working with raster and vector data](nbs/3_combining_raster_vector_data.ipynb)**
1414
- Parse geographic metadata with [cf_xarray](https://cf-xarray.readthedocs.io/en/latest/).
15-
- Handle projections and coordinate reference system information with [GeoPandas](https://geopandas.org/en/stable/), [Rioxarray](https://corteva.github.io/rioxarray/stable/index.html) and [PyProj](https://pyproj4.github.io/pyproj/stable/).
15+
- Handle projections and coordinate reference system information with [GeoPandas](https://geopandas.org/en/stable/), [Rioxarray](https://corteva.github.io/rioxarray/stable/index.html), and [PyProj](https://pyproj4.github.io/pyproj/stable/).
1616
- Spatial subset of vector data with [GeoPandas](https://geopandas.org/en/stable/).
1717
- Spatial subset of raster data using vector data with [Rioxarray](https://corteva.github.io/rioxarray/stable/index.html).
1818

1919
**[4) Initial inspection and analysis of velocity data for a single glacier](nbs/4_exploratory_data_analysis_single.ipynb)**
20-
- Handle projections and coordinate reference system information with [GeoPandas](https://geopandas.org/en/stable/), [Rioxarray](https://corteva.github.io/rioxarray/stable/index.html) and [PyProj](https://pyproj4.github.io/pyproj/stable/).
20+
- Handle projections and coordinate reference system information with [GeoPandas](https://geopandas.org/en/stable/), [Rioxarray](https://corteva.github.io/rioxarray/stable/index.html), and [PyProj](https://pyproj4.github.io/pyproj/stable/).
2121
- Visualize raster and vector with background maps data using [Xarray](https://docs.xarray.dev/en/stable/), [GeoPandas](https://geopandas.org/en/stable/), and [Contextily](https://contextily.readthedocs.io/en/latest/).
2222
- Calculate and examine data coverage along a given dimension using Xarray label-based indexing and selection.
23-
- Use available metadata to interpret and organize dataset,
24-
- Use [`xr.DataTree`](https://xarray-datatree.readthedocs.io/en/latest/data-structures.html) or [`groupby()`](https://docs.xarray.dev/en/stable/user-guide/groupby.html) to separate dataset using metadata,
23+
- Use available metadata to interpret and organize datasets,
24+
- Use [`xr.DataTree`](https://xarray-datatree.readthedocs.io/en/latest/data-structures.html) or [`groupby()`](https://docs.xarray.dev/en/stable/user-guide/groupby.html) to separate datasets using metadata,
2525
- Use Xarray and [`scipy.stats`](https://docs.scipy.org/doc/scipy/reference/stats.html) to calculate and visualize summary statistics along a given dimension.
26-
- Perform dimensional computations, reductions and visualizations using Xarray [`resample()`](https://docs.xarray.dev/en/stable/generated/xarray.Dataset.resample.html), [`groupby()`](https://docs.xarray.dev/en/stable/user-guide/groupby.html) and [`FacetGrid`](https://docs.xarray.dev/en/latest/generated/xarray.plot.FacetGrid.html).
26+
- Perform dimensional computations, reductions and visualizations using Xarray [`resample()`](https://docs.xarray.dev/en/stable/generated/xarray.Dataset.resample.html), [`groupby()`](https://docs.xarray.dev/en/stable/user-guide/groupby.html), and [`FacetGrid`](https://docs.xarray.dev/en/latest/generated/xarray.plot.FacetGrid.html).
2727

2828
**[5) Exploratory analysis and visualization of multiple glaciers](nbs/5_exploratory_data_analysis_group.ipynb)**
2929
- Combine raster and vector data into a multi-dimensional vector data cube using [Xvec](https://xvec.readthedocs.io/).
3030
- Read and write vector data cubes to disk using Xvec methods that rely on [cf_xarray](https://cf-xarray.readthedocs.io/en/latest/) to encode and decode metadata.
31-
- Interactive visualization of vector data cube using Xvec and GeoPandas.
31+
- Interactive visualization of vector data cube using Xvec and GeoPandas.
3232
- Use Xarray plotting tools to visualize data from a vector data cube.
3333
:::
3434
:::{tab-item} Relevant Concepts

0 commit comments

Comments
 (0)