|
| 1 | +#' @export |
| 2 | +estimate_contrasts.estimate_predicted <- function(model, |
| 3 | + contrast = NULL, |
| 4 | + by = NULL, |
| 5 | + predict = "response", |
| 6 | + ci = 0.95, |
| 7 | + p_adjust = "none", |
| 8 | + comparison = "pairwise", |
| 9 | + verbose = TRUE, |
| 10 | + ...) { |
| 11 | + # sanity check |
| 12 | + if (inherits(comparison, "formula")) { |
| 13 | + comparison <- all.vars(comparison)[1] |
| 14 | + } |
| 15 | + comparison <- insight::validate_argument(comparison, c("pairwise", "interaction")) |
| 16 | + |
| 17 | + # sanity check |
| 18 | + if (is.null(contrast)) { |
| 19 | + insight::format_error("Argument `contrast` must be specified and cannot be `NULL`.") |
| 20 | + } |
| 21 | + |
| 22 | + # the "model" object is an object of class "estimate_predicted", we want |
| 23 | + # to copy that into a separate object, for clearer names |
| 24 | + predictions <- object <- model |
| 25 | + model <- attributes(object)$model |
| 26 | + datagrid <- attributes(object)$datagrid |
| 27 | + |
| 28 | + # vcov matrix, for adjusting se |
| 29 | + vcov_matrix <- .safe(stats::vcov(model, verbose = FALSE, ...)) |
| 30 | + |
| 31 | + minfo <- insight::model_info(model) |
| 32 | + |
| 33 | + # model df |
| 34 | + dof <- insight::get_df(model, type = "wald", verbose = FALSE) |
| 35 | + crit_factor <- (1 + ci) / 2 |
| 36 | + |
| 37 | + ## TODO: For Bayesian models, we always use the returned standard errors |
| 38 | + # need to check whether scale is always correct |
| 39 | + |
| 40 | + # for non-Gaussian models, we need to adjust the standard errors |
| 41 | + if (!minfo$is_linear && !minfo$is_bayesian) { |
| 42 | + se_from_predictions <- tryCatch( |
| 43 | + { |
| 44 | + # arguments for predict(), to get SE on response scale for non-Gaussian models |
| 45 | + my_args <- list( |
| 46 | + model, |
| 47 | + newdata = datagrid, |
| 48 | + type = predict, |
| 49 | + se.fit = TRUE |
| 50 | + ) |
| 51 | + # for mixed models, need to set re.form to NULL or NA |
| 52 | + if (insight::is_mixed_model(model)) { |
| 53 | + my_args$re.form <- NULL |
| 54 | + } |
| 55 | + do.call(stats::predict, my_args) |
| 56 | + }, |
| 57 | + error = function(e) { |
| 58 | + e |
| 59 | + } |
| 60 | + ) |
| 61 | + # check if everything worked as expected |
| 62 | + if (inherits(se_from_predictions, "error")) { |
| 63 | + insight::format_error( |
| 64 | + "This model (family) is probably not supported. The error that occured was:", |
| 65 | + se_from_predictions$message |
| 66 | + ) |
| 67 | + } |
| 68 | + # check if we have standard errors |
| 69 | + if (is.null(se_from_predictions$se.fit)) { |
| 70 | + insight::format_error("Could not extract standard errors from predictions.") |
| 71 | + } |
| 72 | + preds_with_se <- merge( |
| 73 | + predictions, |
| 74 | + cbind(datagrid, se_prob = se_from_predictions$se.fit), |
| 75 | + sort = FALSE, |
| 76 | + all = TRUE |
| 77 | + ) |
| 78 | + predictions$SE <- preds_with_se$se_prob |
| 79 | + } else { |
| 80 | + # for linear models, we don't need adjustment of standard errors |
| 81 | + vcov_matrix <- NULL |
| 82 | + } |
| 83 | + |
| 84 | + # compute contrasts or comparisons |
| 85 | + out <- switch(comparison, |
| 86 | + pairwise = .compute_comparisons(predictions, dof, vcov_matrix, datagrid, contrast, by, crit_factor), |
| 87 | + interaction = .compute_interactions(predictions, dof, vcov_matrix, datagrid, contrast, by, crit_factor) |
| 88 | + ) |
| 89 | + |
| 90 | + # restore attributes, for formatting |
| 91 | + info <- attributes(object) |
| 92 | + attributes(out) <- utils::modifyList(attributes(out), info[.info_elements()]) |
| 93 | + |
| 94 | + # overwrite some of the attributes |
| 95 | + attr(out, "contrast") <- contrast |
| 96 | + attr(out, "focal_terms") <- c(contrast, by) |
| 97 | + attr(out, "by") <- by |
| 98 | + |
| 99 | + # format output |
| 100 | + out <- format.marginaleffects_contrasts(out, model, p_adjust, comparison, ...) |
| 101 | + |
| 102 | + # p-value adjustment? |
| 103 | + if (!is.null(p_adjust)) { |
| 104 | + out <- .p_adjust(model, out, p_adjust, verbose, ...) |
| 105 | + } |
| 106 | + |
| 107 | + # Table formatting |
| 108 | + attr(out, "table_title") <- c("Model-based Contrasts Analysis", "blue") |
| 109 | + attr(out, "table_footer") <- .table_footer( |
| 110 | + out, |
| 111 | + by = contrast, |
| 112 | + type = "contrasts", |
| 113 | + model = model, |
| 114 | + info = info |
| 115 | + ) |
| 116 | + |
| 117 | + # Add attributes |
| 118 | + attr(out, "model") <- model |
| 119 | + attr(out, "response") <- insight::find_response(model) |
| 120 | + attr(out, "ci") <- ci |
| 121 | + attr(out, "p_adjust") <- p_adjust |
| 122 | + |
| 123 | + # add attributes from workhorse function |
| 124 | + attributes(out) <- utils::modifyList(attributes(out), info[.info_elements()]) |
| 125 | + |
| 126 | + # Output |
| 127 | + class(out) <- unique(c("estimate_contrasts", "see_estimate_contrasts", class(out))) |
| 128 | + out |
| 129 | +} |
| 130 | + |
| 131 | + |
| 132 | +# pairwise comparisons ---------------------------------------------------- |
| 133 | +.compute_comparisons <- function(predictions, dof, vcov_matrix, datagrid, contrast, by, crit_factor) { |
| 134 | + # we need the focal terms and all unique values from the datagrid |
| 135 | + focal_terms <- c(contrast, by) |
| 136 | + at_list <- lapply(datagrid[focal_terms], unique) |
| 137 | + |
| 138 | + # pairwise comparisons are a bit more complicated, as we need to create |
| 139 | + # pairwise combinations of the levels of the focal terms. |
| 140 | + |
| 141 | + # since we split at "." later, we need to replace "." in all levels |
| 142 | + # with a unique character combination |
| 143 | + at_list <- lapply(at_list, function(i) { |
| 144 | + gsub(".", "#_#", as.character(i), fixed = TRUE) |
| 145 | + }) |
| 146 | + # create pairwise combinations |
| 147 | + level_pairs <- interaction(expand.grid(at_list)) |
| 148 | + # using the matrix and then removing the lower triangle, we get all |
| 149 | + # pairwise combinations, except the ones that are the same |
| 150 | + M <- matrix( |
| 151 | + 1, |
| 152 | + nrow = length(level_pairs), |
| 153 | + ncol = length(level_pairs), |
| 154 | + dimnames = list(level_pairs, level_pairs) |
| 155 | + ) |
| 156 | + M[!upper.tri(M)] <- NA |
| 157 | + # table() works fine to create variables of this pairwise combinations |
| 158 | + pairs_data <- stats::na.omit(as.data.frame(as.table(M))) |
| 159 | + pairs_data$Freq <- NULL |
| 160 | + pairs_data <- lapply(pairs_data, as.character) |
| 161 | + # the levels are combined by ".", we need to split them and then create |
| 162 | + # a list of data frames, where each data frames contains the levels of |
| 163 | + # the focal terms as variables |
| 164 | + pairs_data <- lapply(pairs_data, function(i) { |
| 165 | + # split at ".", which is the separator char for levels |
| 166 | + pair <- strsplit(i, ".", fixed = TRUE) |
| 167 | + # since we replaced "." with "#_#" in original levels, |
| 168 | + # we need to replace it back here |
| 169 | + pair <- lapply(pair, gsub, pattern = "#_#", replacement = ".", fixed = TRUE) |
| 170 | + datawizard::data_rotate(as.data.frame(pair)) |
| 171 | + }) |
| 172 | + # now we iterate over all pairs and try to find the corresponding predictions |
| 173 | + out <- do.call(rbind, lapply(seq_len(nrow(pairs_data[[1]])), function(i) { |
| 174 | + pos1 <- predictions[[focal_terms[1]]] == pairs_data[[1]][i, 1] |
| 175 | + pos2 <- predictions[[focal_terms[1]]] == pairs_data[[2]][i, 1] |
| 176 | + |
| 177 | + if (length(focal_terms) > 1) { |
| 178 | + pos1 <- pos1 & predictions[[focal_terms[2]]] == pairs_data[[1]][i, 2] |
| 179 | + pos2 <- pos2 & predictions[[focal_terms[2]]] == pairs_data[[2]][i, 2] |
| 180 | + } |
| 181 | + if (length(focal_terms) > 2) { |
| 182 | + pos1 <- pos1 & predictions[[focal_terms[3]]] == pairs_data[[1]][i, 3] |
| 183 | + pos2 <- pos2 & predictions[[focal_terms[3]]] == pairs_data[[2]][i, 3] |
| 184 | + } |
| 185 | + # once we have found the correct rows for the pairs, we can calculate |
| 186 | + # the contrast. We need the predicted values first |
| 187 | + predicted1 <- predictions$Predicted[pos1] |
| 188 | + predicted2 <- predictions$Predicted[pos2] |
| 189 | + |
| 190 | + # we then create labels for the pairs. "result" is a data frame with |
| 191 | + # the labels (of the pairwise contrasts) as columns. |
| 192 | + result <- data.frame( |
| 193 | + Parameter = paste( |
| 194 | + paste0("(", paste(pairs_data[[1]][i, ], collapse = " "), ")"), |
| 195 | + paste0("(", paste(pairs_data[[2]][i, ], collapse = " "), ")"), |
| 196 | + sep = "-" |
| 197 | + ), |
| 198 | + stringsAsFactors = FALSE |
| 199 | + ) |
| 200 | + # we then add the contrast and the standard error. for linear models, the |
| 201 | + # SE is sqrt(se1^2 + se2^2). |
| 202 | + result$Difference <- predicted1 - predicted2 |
| 203 | + # sum of squared standard errors |
| 204 | + sum_se_squared <- predictions$SE[pos1]^2 + predictions$SE[pos2]^2 |
| 205 | + # for non-Gaussian models, we subtract the covariance of the two predictions |
| 206 | + # but only if the vcov_matrix is not NULL and has the correct dimensions |
| 207 | + correct_row_dims <- nrow(vcov_matrix) > 0 && all(nrow(vcov_matrix) >= which(pos1)) |
| 208 | + correct_col_dims <- ncol(vcov_matrix) > 0 && all(ncol(vcov_matrix) >= which(pos2)) |
| 209 | + if (is.null(vcov_matrix) || !correct_row_dims || !correct_col_dims) { |
| 210 | + vcov_sub <- 0 |
| 211 | + } else { |
| 212 | + vcov_sub <- vcov_matrix[which(pos1), which(pos2)]^2 |
| 213 | + } |
| 214 | + # Avoid negative values in sqrt() |
| 215 | + if (vcov_sub >= sum_se_squared) { |
| 216 | + result$SE <- sqrt(sum_se_squared) |
| 217 | + } else { |
| 218 | + result$SE <- sqrt(sum_se_squared - vcov_sub) |
| 219 | + } |
| 220 | + result |
| 221 | + })) |
| 222 | + # add CI and p-values |
| 223 | + out$CI_low <- out$Difference - stats::qt(crit_factor, df = dof) * out$SE |
| 224 | + out$CI_high <- out$Difference + stats::qt(crit_factor, df = dof) * out$SE |
| 225 | + out$Statistic <- out$Difference / out$SE |
| 226 | + out$p <- 2 * stats::pt(abs(out$Statistic), df = dof, lower.tail = FALSE) |
| 227 | + |
| 228 | + # filter by "by" |
| 229 | + if (!is.null(by)) { |
| 230 | + idx <- rep_len(TRUE, nrow(out)) |
| 231 | + for (filter_by in by) { |
| 232 | + # create index with "by" variables for each comparison pair |
| 233 | + filter_data <- do.call(cbind, lapply(pairs_data, function(i) { |
| 234 | + colnames(i) <- focal_terms |
| 235 | + i[filter_by] |
| 236 | + })) |
| 237 | + # check which pairs have identical values - these are the rows we want to keep |
| 238 | + idx <- idx & unname(apply(filter_data, 1, function(r) r[1] == r[2])) |
| 239 | + } |
| 240 | + # prepare filtered dataset |
| 241 | + filter_column <- pairs_data[[1]] |
| 242 | + colnames(filter_column) <- focal_terms |
| 243 | + # bind the filtered data to the output |
| 244 | + out <- cbind(filter_column[idx, by, drop = FALSE], out[idx, , drop = FALSE]) |
| 245 | + } |
| 246 | + |
| 247 | + rownames(out) <- NULL |
| 248 | + out |
| 249 | +} |
| 250 | + |
| 251 | + |
| 252 | +# interaction contrasts ---------------------------------------------------- |
| 253 | +.compute_interactions <- function(predictions, dof, vcov_matrix, datagrid, contrast, by, crit_factor) { |
| 254 | + # we need the focal terms and all unique values from the datagrid |
| 255 | + focal_terms <- c(contrast, by) |
| 256 | + at_list <- lapply(datagrid[focal_terms], unique) |
| 257 | + |
| 258 | + ## TODO: interaction contrasts currently only work for two focal terms |
| 259 | + if (length(focal_terms) != 2) { |
| 260 | + insight::format_error("Interaction contrasts currently only work for two focal terms.") |
| 261 | + } |
| 262 | + |
| 263 | + # create pairwise combinations of first focal term |
| 264 | + level_pairs <- at_list[[1]] |
| 265 | + M <- matrix( |
| 266 | + 1, |
| 267 | + nrow = length(level_pairs), |
| 268 | + ncol = length(level_pairs), |
| 269 | + dimnames = list(level_pairs, level_pairs) |
| 270 | + ) |
| 271 | + M[!upper.tri(M)] <- NA |
| 272 | + # table() works fine to create variables of this pairwise combinations |
| 273 | + pairs_focal1 <- stats::na.omit(as.data.frame(as.table(M))) |
| 274 | + pairs_focal1$Freq <- NULL |
| 275 | + |
| 276 | + # create pairwise combinations of second focal term |
| 277 | + level_pairs <- at_list[[2]] |
| 278 | + M <- matrix( |
| 279 | + 1, |
| 280 | + nrow = length(level_pairs), |
| 281 | + ncol = length(level_pairs), |
| 282 | + dimnames = list(level_pairs, level_pairs) |
| 283 | + ) |
| 284 | + M[!upper.tri(M)] <- NA |
| 285 | + # table() works fine to create variables of this pairwise combinations |
| 286 | + pairs_focal2 <- stats::na.omit(as.data.frame(as.table(M))) |
| 287 | + pairs_focal2$Freq <- NULL |
| 288 | + |
| 289 | + # now we iterate over all pairs and try to find the corresponding predictions |
| 290 | + out <- do.call(rbind, lapply(seq_len(nrow(pairs_focal1)), function(i) { |
| 291 | + # differences between levels of first focal term |
| 292 | + pos1 <- predictions[[focal_terms[1]]] == pairs_focal1[i, 1] |
| 293 | + pos2 <- predictions[[focal_terms[1]]] == pairs_focal1[i, 2] |
| 294 | + |
| 295 | + do.call(rbind, lapply(seq_len(nrow(pairs_focal2)), function(j) { |
| 296 | + # difference between levels of first focal term, *within* first |
| 297 | + # level of second focal term |
| 298 | + pos_1a <- pos1 & predictions[[focal_terms[2]]] == pairs_focal2[j, 1] |
| 299 | + pos_1b <- pos2 & predictions[[focal_terms[2]]] == pairs_focal2[j, 1] |
| 300 | + # difference between levels of first focal term, *within* second |
| 301 | + # level of second focal term |
| 302 | + pos_2a <- pos1 & predictions[[focal_terms[2]]] == pairs_focal2[j, 2] |
| 303 | + pos_2b <- pos2 & predictions[[focal_terms[2]]] == pairs_focal2[j, 2] |
| 304 | + # once we have found the correct rows for the pairs, we can calculate |
| 305 | + # the contrast. We need the predicted values first |
| 306 | + predicted1 <- predictions$Predicted[pos_1a] - predictions$Predicted[pos_1b] |
| 307 | + predicted2 <- predictions$Predicted[pos_2a] - predictions$Predicted[pos_2b] |
| 308 | + # we then create labels for the pairs. "result" is a data frame with |
| 309 | + # the labels (of the pairwise contrasts) as columns. |
| 310 | + result <- data.frame( |
| 311 | + a = paste(pairs_focal1[i, 1], pairs_focal1[i, 2], sep = "-"), |
| 312 | + b = paste(pairs_focal2[j, 1], pairs_focal2[j, 2], sep = " and "), |
| 313 | + stringsAsFactors = FALSE |
| 314 | + ) |
| 315 | + colnames(result) <- focal_terms |
| 316 | + # we then add the contrast and the standard error. for linear models, the |
| 317 | + # SE is sqrt(se1^2 + se2^2) |
| 318 | + result$Difference <- predicted1 - predicted2 |
| 319 | + sum_se_squared <- sum( |
| 320 | + predictions$SE[pos_1a]^2, predictions$SE[pos_1b]^2, |
| 321 | + predictions$SE[pos_2a]^2, predictions$SE[pos_2b]^2 |
| 322 | + ) |
| 323 | + # for non-Gaussian models, we subtract the covariance of the two predictions |
| 324 | + # but only if the vcov_matrix is not NULL and has the correct dimensions |
| 325 | + correct_row_dims <- nrow(vcov_matrix) > 0 && all(nrow(vcov_matrix) >= which(pos_1a)) && all(nrow(vcov_matrix) >= which(pos_2a)) # nolint |
| 326 | + correct_col_dims <- ncol(vcov_matrix) > 0 && all(ncol(vcov_matrix) >= which(pos_1b)) && all(ncol(vcov_matrix) >= which(pos_2b)) # nolint |
| 327 | + if (is.null(vcov_matrix) || !correct_row_dims || !correct_col_dims) { |
| 328 | + vcov_sub <- 0 |
| 329 | + } else { |
| 330 | + vcov_sub <- sum( |
| 331 | + vcov_matrix[which(pos_1a), which(pos_1b)]^2, |
| 332 | + vcov_matrix[which(pos_2a), which(pos_2b)]^2 |
| 333 | + ) |
| 334 | + } |
| 335 | + # Avoid negative values in sqrt() |
| 336 | + if (vcov_sub >= sum_se_squared) { |
| 337 | + result$SE <- sqrt(sum_se_squared) |
| 338 | + } else { |
| 339 | + result$SE <- sqrt(sum_se_squared - vcov_sub) |
| 340 | + } |
| 341 | + result |
| 342 | + })) |
| 343 | + })) |
| 344 | + # add CI and p-values |
| 345 | + out$CI_low <- out$Difference - stats::qt(crit_factor, df = dof) * out$SE |
| 346 | + out$CI_high <- out$Difference + stats::qt(crit_factor, df = dof) * out$SE |
| 347 | + out$Statistic <- out$Difference / out$SE |
| 348 | + out$p <- 2 * stats::pt(abs(out$Statistic), df = dof, lower.tail = FALSE) |
| 349 | + out |
| 350 | +} |
0 commit comments