@@ -348,26 +348,26 @@ def shaded_fraction1d(
348348 solar_zenith ,
349349 solar_azimuth ,
350350 axis_azimuth ,
351- shaded_tracker_rotation ,
351+ shaded_row_rotation ,
352352 * ,
353353 collector_width ,
354354 pitch ,
355355 axis_tilt = 0 ,
356356 surface_to_axis_offset = 0 ,
357357 cross_axis_slope = 0 ,
358- shading_tracker_rotation = None ,
358+ shading_row_rotation = None ,
359359):
360360 r"""
361361 Shaded fraction in the vertical dimension of tilted rows, or perpendicular
362362 to the axis of horizontal rows.
363363
364- If ``shading_tracker_rotation `` isn't provided, assumes both the shaded
364+ If ``shading_row_rotation `` isn't provided, assumes both the shaded
365365 row and the one blocking the direct beam
366366 share the same rotation and azimuth values.
367367
368368 .. warning::
369- This function assumes the roles of the shaded and shading trackers are
370- the same during all the day. If the trackers allow for different
369+ This function assumes the roles of the shaded and shading rows are
370+ the same during all the day. If the rows allow for different
371371 shading or shaded roles, e.g. a N-S single-axis tracker, you must
372372 switch the inputs depending on the sign of the projected solar zenith
373373 angle. See the Examples section below.
@@ -382,14 +382,16 @@ def shaded_fraction1d(
382382 Solar position azimuth, in degrees.
383383 axis_azimuth : numeric
384384 In degrees. North=0º, South=180º, East=90º, West=270º.
385- shaded_tracker_rotation : numeric
386- Right-handed rotation of the tracker receiving the shade, with respect
385+ This is the rotation axis of a tracker. Consider fixed-tilt arrays as
386+ a particular case of a tracker.
387+ shaded_row_rotation : numeric
388+ Right-handed rotation of the row receiving the shade, with respect
387389 to ``axis_azimuth``. In degrees :math:`^{\circ}`.
388390 collector_width : numeric
389- Vertical length of a tilted tracker . The returned ``shaded_fraction``
391+ Vertical length of a tilted row . The returned ``shaded_fraction``
390392 is the ratio of the shadow over this value.
391393 pitch : numeric
392- Axis-to-axis horizontal spacing of the trackers .
394+ Axis-to-axis horizontal spacing of the row .
393395 axis_tilt : numeric, default 0
394396 Tilt of the rows axis from horizontal. In degrees :math:`^{\circ}`.
395397 surface_to_axis_offset : numeric, default 0
@@ -398,8 +400,8 @@ def shaded_fraction1d(
398400 Angle of the plane containing the rows' axes from
399401 horizontal. Right-handed rotation with respect to ``axis_azimuth``.
400402 In degrees :math:`^{\circ}`.
401- shading_tracker_rotation : numeric, optional
402- Right-handed rotation of the tracker casting the shadow, with respect
403+ shading_row_rotation : numeric, optional
404+ Right-handed rotation of the row casting the shadow, with respect
403405 to ``axis_azimuth``. In degrees :math:`^{\circ}`.
404406
405407 Returns
@@ -416,17 +418,17 @@ def shaded_fraction1d(
416418 Parameters are defined as follow:
417419
418420 .. figure:: ../../_images/Anderson_Jensen_2024_Fig3.png
419- :alt: Diagram showing the two trackers and the parameters of the model.
421+ :alt: Diagram showing the two rows and the parameters of the model.
420422
421423 Figure 3 of [1]_. See correspondence between this nomenclature and the
422424 function parameters in the table below.
423425
424426 +------------------+----------------------------+---------------------+
425427 | Symbol | Parameter | Units |
426428 +==================+============================+=====================+
427- | :math:`\theta_1` |``shading_tracker_rotation`` | |
429+ | :math:`\theta_1` | ``shading_row_rotation`` | |
428430 +------------------+----------------------------+ |
429- | :math:`\theta_2` | ``shaded_tracker_rotation`` | Degrees |
431+ | :math:`\theta_2` | ``shaded_row_rotation`` | Degrees |
430432 +------------------+----------------------------+ :math:`^{\circ}` |
431433 | :math:`\beta_c` | ``cross_axis_slope`` | |
432434 +------------------+----------------------------+---------------------+
@@ -448,9 +450,9 @@ def shaded_fraction1d(
448450 :math:`2m`, and row rotations of :math:`30^{\circ}`. In the morning.
449451
450452 >>> shaded_fraction1d(solar_zenith=80, solar_azimuth=104.5,
451- ... axis_azimuth=90, shaded_tracker_rotation =30,
452- ... shading_tracker_rotation=30, collector_width=2, pitch=3,
453- ... axis_tilt=0, surface_to_axis_offset=0.05, cross_axis_slope=0)
453+ ... axis_azimuth=90, shaded_row_rotation=30, shading_row_rotation =30,
454+ ... collector_width=2, pitch=3, axis_tilt=0 ,
455+ ... surface_to_axis_offset=0.05, cross_axis_slope=0)
454456 0.6827437712114521
455457
456458 **Fixed-tilt north-facing array on sloped terrain**
@@ -462,9 +464,9 @@ def shaded_fraction1d(
462464 direction (zero cross-axis slope). Shaded in the morning.
463465
464466 >>> shaded_fraction1d(solar_zenith=65, solar_azimuth=75.5,
465- ... axis_azimuth=270, shaded_tracker_rotation =50,
466- ... shading_tracker_rotation=30, collector_width=2.5, pitch=4,
467- ... axis_tilt=10, surface_to_axis_offset=0.05, cross_axis_slope=0)
467+ ... axis_azimuth=270, shaded_row_rotation =50, shading_row_rotation=30 ,
468+ ... collector_width=2.5, pitch=4, axis_tilt=10 ,
469+ ... surface_to_axis_offset=0.05, cross_axis_slope=0)
468470 0.6975923460352351
469471
470472 **N-S single-axis tracker on sloped terrain**
@@ -475,8 +477,8 @@ def shaded_fraction1d(
475477 tracker is higher than the west-most tracker).
476478
477479 >>> shaded_fraction1d(solar_zenith=50, solar_azimuth=90, axis_azimuth=180,
478- ... shaded_tracker_rotation =-30, collector_width=1.4, pitch=3,
479- ... axis_tilt=0, surface_to_axis_offset=0.10, cross_axis_slope=7)
480+ ... shaded_row_rotation =-30, collector_width=1.4, pitch=3, axis_tilt=0 ,
481+ ... surface_to_axis_offset=0.10, cross_axis_slope=7)
480482 0.5828961460616938
481483
482484 Note the previous example only is valid for the shaded fraction of the
@@ -486,12 +488,12 @@ def shaded_fraction1d(
486488 east-most tracker.
487489
488490 To calculate the shaded fraction for the east-most
489- tracker, you must input the corresponding ``shaded_tracker_rotation ``
491+ tracker, you must input the corresponding ``shaded_row_rotation ``
490492 in the afternoon.
491493
492494 >>> shaded_fraction1d(solar_zenith=50, solar_azimuth=270, axis_azimuth=180,
493- ... shaded_tracker_rotation =30, collector_width=1.4, pitch=1 ,
494- ... axis_tilt=0, surface_to_axis_offset=0.10, cross_axis_slope=7)
495+ ... shaded_row_rotation =30, collector_width=1.4, pitch=3, axis_tilt=0 ,
496+ ... surface_to_axis_offset=0.10, cross_axis_slope=7)
495497 0.4399034444363955
496498
497499 You must switch the input/output depending on the
@@ -511,9 +513,9 @@ def shaded_fraction1d(
511513 """
512514 # For nomenclature you may refer to [1].
513515
514- # rotation of tracker casting the shadow defaults to shaded tracker 's one
515- if shading_tracker_rotation is None :
516- shading_tracker_rotation = shaded_tracker_rotation
516+ # rotation of row casting the shadow defaults to shaded row 's one
517+ if shading_row_rotation is None :
518+ shading_row_rotation = shaded_row_rotation
517519
518520 # projected solar zenith angle
519521 projected_solar_zenith = projected_solar_zenith_angle (
@@ -524,8 +526,8 @@ def shaded_fraction1d(
524526 )
525527
526528 # calculate repeated elements
527- thetas_1_S_diff = shading_tracker_rotation - projected_solar_zenith
528- thetas_2_S_diff = shaded_tracker_rotation - projected_solar_zenith
529+ thetas_1_S_diff = shading_row_rotation - projected_solar_zenith
530+ thetas_2_S_diff = shaded_row_rotation - projected_solar_zenith
529531 thetaS_rotation_diff = projected_solar_zenith - cross_axis_slope
530532
531533 cos_theta_2_S_diff_abs = np .abs (cosd (thetas_2_S_diff ))
0 commit comments