@@ -557,8 +557,14 @@ def shaded_fraction1d(
557
557
558
558
def martinez_shade_factor (shaded_fraction , N_shaded_blocks , N_total_blocks ):
559
559
r"""
560
- A shading correction factor for the power yield of non-monolithic Silicon
560
+ A shading correction factor for the direct and circumsolar incident
561
+ irradiance of non-monolithic Silicon
561
562
modules and arrays with an arbitrary number of bypass diodes.
563
+
564
+ .. versionadded:: 0.10.5
565
+
566
+ Parameters
567
+ ----------
562
568
shaded_fraction : numeric
563
569
Surface shaded fraction. Unitless.
564
570
shaded_blocks : numeric
@@ -569,7 +575,7 @@ def martinez_shade_factor(shaded_fraction, N_shaded_blocks, N_total_blocks):
569
575
Returns
570
576
-------
571
577
shading_correction_factor : numeric
572
- Multiply unshaded power by this factor.
578
+ Multiply direct and circumsolar irradiance by this factor.
573
579
574
580
Notes
575
581
-----
@@ -580,9 +586,9 @@ def martinez_shade_factor(shaded_fraction, N_shaded_blocks, N_total_blocks):
580
586
(1 - F_{ES}) = (1 - F_{GS}) (1 - \frac{N_{SB}}{N_{TB} + 1})
581
587
582
588
Where :math:`(1 - F_{ES})` is the correction factor to be multiplied by
583
- the unshaded irradiance, :math:`F_{GS}` is the shaded fraction,
584
- :math:`N_{SB}` is the number of shaded blocks and :math:`N_{TB}` is the
585
- number of total blocks.
589
+ the direct and circumsolar irradiance, :math:`F_{GS}` is the shaded
590
+ fraction of the collector, :math:`N_{SB}` is the number of shaded blocks
591
+ and :math:`N_{TB}` is the number of total blocks.
586
592
587
593
Blocks terminology
588
594
^^^^^^^^^^^^^^^^^^
@@ -597,6 +603,16 @@ def martinez_shade_factor(shaded_fraction, N_shaded_blocks, N_total_blocks):
597
603
- whether or not the module is comprised of *half-cut cells*
598
604
The latter two are heavily correlated.
599
605
606
+ For example:
607
+ - A module with 3 bypass diodes and 3 junction boxes is likely to have
608
+ 3 blocks.
609
+ - A module with 1 bypass diode and 1 junction box is likely to have 1
610
+ block.
611
+ - A module with 3 bypass diodes and 1 junction box is likely to have 3
612
+ blocks.
613
+ - A module with 1 bypass diode and 3 junction boxes is likely to have 1
614
+ block.
615
+
600
616
Examples
601
617
--------
602
618
Minimal example. For a complete example, see
@@ -606,15 +622,18 @@ def martinez_shade_factor(shaded_fraction, N_shaded_blocks, N_total_blocks):
606
622
>>> total_blocks = 3 # blocks along the vertical of the module
607
623
>>> Pwr_out_unshaded = 100 # kW
608
624
>>> shaded_fraction = shading.shaded_fraction1d(
609
- TODO copy from linear loss PR
625
+ 80, 180, 90, 25,
626
+ collector_width=0.5, row_pitch=1, surface_to_axis_offset=0,
627
+ cross_axis_slope=5.711, shading_tracker_tilt=50)
610
628
)
611
629
>>> shaded_blocks = np.ceil(total_blocks*shaded_fraction)
612
630
>>> loss_correction = shading.martinez_shade_factor()
613
631
>>> Pwr_out_shaded = Pwr_out_unshaded * loss_correction
614
632
615
633
See Also
616
634
--------
617
- pvlib.shading.linear_shade_loss for monolithic thin film modules
635
+ shaded_fraction1d : to calculate 1-dimensional shaded fraction
636
+ linear_shade_loss
618
637
619
638
References
620
639
----------
0 commit comments