|
| 1 | +// ******************************************************************************* |
| 2 | +// Copyright (c) 2025 Contributors to the Eclipse Foundation |
| 3 | +// |
| 4 | +// See the NOTICE file(s) distributed with this work for additional |
| 5 | +// information regarding copyright ownership. |
| 6 | +// |
| 7 | +// This program and the accompanying materials are made available under the |
| 8 | +// terms of the Apache License Version 2.0 which is available at |
| 9 | +// https://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +// |
| 11 | +// SPDX-License-Identifier: Apache-2.0 |
| 12 | +// ******************************************************************************* |
| 13 | + |
| 14 | +mod generic; |
| 15 | + |
| 16 | +use core::mem::needs_drop; |
| 17 | +use core::ops; |
| 18 | + |
| 19 | +use self::generic::GenericQueue; |
| 20 | +use crate::storage::Heap; |
| 21 | +use crate::storage::Inline; |
| 22 | + |
| 23 | +/// A fixed-capacity, ABI-compatible queue. |
| 24 | +/// |
| 25 | +/// The queue can hold between 0 and `CAPACITY` elements, and behaves similarly to Rust's `VecDeque`, |
| 26 | +/// except that it stores the elements inline and doesn't allocate. |
| 27 | +/// |
| 28 | +/// `CAPACITY` must be `>= 1` and `<= u32::MAX`. |
| 29 | +#[repr(transparent)] |
| 30 | +pub struct AbiQueue<T: Copy, const CAPACITY: usize> { |
| 31 | + inner: GenericQueue<T, Inline<T, CAPACITY>>, |
| 32 | +} |
| 33 | + |
| 34 | +impl<T: Copy, const CAPACITY: usize> AbiQueue<T, CAPACITY> { |
| 35 | + const CHECK_CAPACITY: () = assert!(0 < CAPACITY && CAPACITY <= u32::MAX as usize); |
| 36 | + |
| 37 | + /// Creates an empty queue. |
| 38 | + #[must_use] |
| 39 | + pub fn new() -> Self { |
| 40 | + let () = Self::CHECK_CAPACITY; |
| 41 | + |
| 42 | + Self { |
| 43 | + inner: GenericQueue::new(CAPACITY as u32), |
| 44 | + } |
| 45 | + } |
| 46 | +} |
| 47 | + |
| 48 | +impl<T: Copy, const CAPACITY: usize> Default for AbiQueue<T, CAPACITY> { |
| 49 | + fn default() -> Self { |
| 50 | + Self::new() |
| 51 | + } |
| 52 | +} |
| 53 | + |
| 54 | +impl<T: Copy, const CAPACITY: usize> ops::Deref for AbiQueue<T, CAPACITY> { |
| 55 | + type Target = GenericQueue<T, Inline<T, CAPACITY>>; |
| 56 | + |
| 57 | + fn deref(&self) -> &Self::Target { |
| 58 | + &self.inner |
| 59 | + } |
| 60 | +} |
| 61 | + |
| 62 | +impl<T: Copy, const CAPACITY: usize> ops::DerefMut for AbiQueue<T, CAPACITY> { |
| 63 | + fn deref_mut(&mut self) -> &mut Self::Target { |
| 64 | + &mut self.inner |
| 65 | + } |
| 66 | +} |
| 67 | + |
| 68 | +/// A fixed-capacity vector. |
| 69 | +/// |
| 70 | +/// The vector can hold between 0 and `CAPACITY` elements, and behaves similarly to Rust's `Vec`, |
| 71 | +/// except that it allocates memory immediately on construction, and can't shrink or grow. |
| 72 | +pub struct FixedQueue<T> { |
| 73 | + inner: GenericQueue<T, Heap<T>>, |
| 74 | +} |
| 75 | + |
| 76 | +impl<T> FixedQueue<T> { |
| 77 | + /// Creates an empty queue and allocates memory for up to `capacity` elements, where `capacity <= u32::MAX`. |
| 78 | + /// |
| 79 | + /// # Panics |
| 80 | + /// |
| 81 | + /// - Panics if `capacity > u32::MAX`. |
| 82 | + /// - Panics if the memory allocation fails. |
| 83 | + #[must_use] |
| 84 | + pub fn new(capacity: usize) -> Self { |
| 85 | + assert!(capacity <= u32::MAX as usize, "FixedQueue can hold at most u32::MAX elements"); |
| 86 | + Self { |
| 87 | + inner: GenericQueue::new(capacity as u32), |
| 88 | + } |
| 89 | + } |
| 90 | +} |
| 91 | + |
| 92 | +impl<T> Drop for FixedQueue<T> { |
| 93 | + fn drop(&mut self) { |
| 94 | + if needs_drop::<T>() { |
| 95 | + self.inner.clear(); |
| 96 | + } |
| 97 | + } |
| 98 | +} |
| 99 | + |
| 100 | +impl<T> ops::Deref for FixedQueue<T> { |
| 101 | + type Target = GenericQueue<T, Heap<T>>; |
| 102 | + |
| 103 | + fn deref(&self) -> &Self::Target { |
| 104 | + &self.inner |
| 105 | + } |
| 106 | +} |
| 107 | + |
| 108 | +impl<T> ops::DerefMut for FixedQueue<T> { |
| 109 | + fn deref_mut(&mut self) -> &mut Self::Target { |
| 110 | + &mut self.inner |
| 111 | + } |
| 112 | +} |
| 113 | + |
| 114 | +#[cfg(test)] |
| 115 | +mod tests { |
| 116 | + use std::collections::VecDeque; |
| 117 | + |
| 118 | + use super::*; |
| 119 | + |
| 120 | + fn to_vec<T: Copy>((first, second): (&[T], &[T])) -> Vec<T> { |
| 121 | + let mut elements = first.to_vec(); |
| 122 | + elements.extend_from_slice(second); |
| 123 | + elements |
| 124 | + } |
| 125 | + |
| 126 | + #[test] |
| 127 | + fn abi_queue_push_and_pop() { |
| 128 | + fn run_test<const N: usize>() { |
| 129 | + let mut queue = AbiQueue::<i64, N>::new(); |
| 130 | + let mut control = VecDeque::new(); |
| 131 | + |
| 132 | + // Completely fill and empty the queue N times, but move the internal start point |
| 133 | + // ahead by one each time |
| 134 | + for _ in 0..N { |
| 135 | + let result = queue.pop_front(); |
| 136 | + assert_eq!(result, None); |
| 137 | + |
| 138 | + for i in 0..N { |
| 139 | + let value = i as i64 * 123 + 456; |
| 140 | + let result = queue.push_back(value); |
| 141 | + assert_eq!(*result.unwrap(), value); |
| 142 | + control.push_back(value); |
| 143 | + assert_eq!(to_vec(queue.as_slices()), to_vec(control.as_slices())); |
| 144 | + } |
| 145 | + |
| 146 | + let result = queue.push_back(123456); |
| 147 | + assert!(result.is_err()); |
| 148 | + |
| 149 | + for _ in 0..N { |
| 150 | + let expected = control.pop_front().unwrap(); |
| 151 | + let actual = queue.pop_front(); |
| 152 | + assert_eq!(actual, Some(expected)); |
| 153 | + } |
| 154 | + |
| 155 | + let result = queue.pop_front(); |
| 156 | + assert_eq!(result, None); |
| 157 | + |
| 158 | + // One push and one pop to move the internal start point ahead |
| 159 | + queue.push_back(987).unwrap(); |
| 160 | + assert_eq!(queue.pop_front(), Some(987)); |
| 161 | + } |
| 162 | + } |
| 163 | + |
| 164 | + run_test::<1>(); |
| 165 | + run_test::<2>(); |
| 166 | + run_test::<3>(); |
| 167 | + run_test::<4>(); |
| 168 | + run_test::<5>(); |
| 169 | + } |
| 170 | + |
| 171 | + #[test] |
| 172 | + fn abi_queue_is_empty_and_is_full() { |
| 173 | + fn run_test<const N: usize>() { |
| 174 | + let mut queue = AbiQueue::<i64, N>::new(); |
| 175 | + |
| 176 | + // Completely fill and empty the queue N times, but move the internal start point |
| 177 | + // ahead by one each time |
| 178 | + for _ in 0..N { |
| 179 | + assert!(queue.is_empty()); |
| 180 | + |
| 181 | + for i in 0..N { |
| 182 | + assert!(!queue.is_full()); |
| 183 | + queue.push_back(i as i64 * 123 + 456).unwrap(); |
| 184 | + assert!(!queue.is_empty()); |
| 185 | + } |
| 186 | + |
| 187 | + assert!(queue.is_full()); |
| 188 | + |
| 189 | + for _ in 0..N { |
| 190 | + assert!(!queue.is_empty()); |
| 191 | + queue.pop_front(); |
| 192 | + assert!(!queue.is_full()); |
| 193 | + } |
| 194 | + |
| 195 | + assert!(queue.is_empty()); |
| 196 | + |
| 197 | + // One push and one pop to move the internal start point ahead |
| 198 | + queue.push_back(987).unwrap(); |
| 199 | + assert_eq!(queue.pop_front(), Some(987)); |
| 200 | + } |
| 201 | + } |
| 202 | + |
| 203 | + run_test::<1>(); |
| 204 | + run_test::<2>(); |
| 205 | + run_test::<3>(); |
| 206 | + run_test::<4>(); |
| 207 | + run_test::<5>(); |
| 208 | + } |
| 209 | + |
| 210 | + #[test] |
| 211 | + fn fixed_queue_push_and_pop() { |
| 212 | + fn run_test(n: usize) { |
| 213 | + let mut queue = FixedQueue::<i64>::new(n); |
| 214 | + let mut control = VecDeque::new(); |
| 215 | + |
| 216 | + // Completely fill and empty the queue n times, but move the internal start point |
| 217 | + // ahead by one each time |
| 218 | + for _ in 0..n { |
| 219 | + let result = queue.pop_front(); |
| 220 | + assert_eq!(result, None); |
| 221 | + |
| 222 | + for i in 0..n { |
| 223 | + let value = i as i64 * 123 + 456; |
| 224 | + let result = queue.push_back(value); |
| 225 | + assert_eq!(*result.unwrap(), value); |
| 226 | + control.push_back(value); |
| 227 | + assert_eq!(to_vec(queue.as_slices()), to_vec(control.as_slices())); |
| 228 | + } |
| 229 | + |
| 230 | + let result = queue.push_back(123456); |
| 231 | + assert!(result.is_err()); |
| 232 | + |
| 233 | + for _ in 0..n { |
| 234 | + let expected = control.pop_front().unwrap(); |
| 235 | + let actual = queue.pop_front(); |
| 236 | + assert_eq!(actual, Some(expected)); |
| 237 | + } |
| 238 | + |
| 239 | + let result = queue.pop_front(); |
| 240 | + assert_eq!(result, None); |
| 241 | + |
| 242 | + // One push and one pop to move the internal start point ahead |
| 243 | + queue.push_back(987).unwrap(); |
| 244 | + assert_eq!(queue.pop_front(), Some(987)); |
| 245 | + } |
| 246 | + } |
| 247 | + |
| 248 | + for i in 0..6 { |
| 249 | + run_test(i); |
| 250 | + } |
| 251 | + } |
| 252 | + |
| 253 | + #[test] |
| 254 | + fn fixed_queue_is_empty_and_is_full() { |
| 255 | + fn run_test(n: usize) { |
| 256 | + let mut queue = FixedQueue::<i64>::new(n); |
| 257 | + |
| 258 | + // Completely fill and empty the queue n times, but move the internal start point |
| 259 | + // ahead by one each time |
| 260 | + for _ in 0..n { |
| 261 | + assert!(queue.is_empty()); |
| 262 | + |
| 263 | + for i in 0..n { |
| 264 | + assert!(!queue.is_full()); |
| 265 | + queue.push_back(i as i64 * 123 + 456).unwrap(); |
| 266 | + assert!(!queue.is_empty()); |
| 267 | + } |
| 268 | + |
| 269 | + assert!(queue.is_full()); |
| 270 | + |
| 271 | + for _ in 0..n { |
| 272 | + assert!(!queue.is_empty()); |
| 273 | + queue.pop_front(); |
| 274 | + assert!(!queue.is_full()); |
| 275 | + } |
| 276 | + |
| 277 | + assert!(queue.is_empty()); |
| 278 | + |
| 279 | + // One push and one pop to move the internal start point ahead |
| 280 | + queue.push_back(987).unwrap(); |
| 281 | + assert_eq!(queue.pop_front(), Some(987)); |
| 282 | + } |
| 283 | + } |
| 284 | + |
| 285 | + for i in 0..6 { |
| 286 | + run_test(i); |
| 287 | + } |
| 288 | + } |
| 289 | +} |
0 commit comments